• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 13
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Proteomic analysis of short- and long-term salt stress in the rice leaf blade

Parker, Robert January 2005 (has links)
No description available.
12

Water table control for rice production in Ghana

Owusu-Sekyere, Joshua Danso January 2005 (has links)
An investigation has been undertaken to determine the consequence of using water table control for lowland rice production by growing rice varieties Azucena and IR36 in sand cores under a controlled environment in a series of experiments in which the water table was held at fixed levels. Each experiment had a duration of six weeks and in all, four treatments were used: (a) water table at a depth of 30 cm below the surface, (b) water table at a depth of 15 cm below the surface, (c) saturated sand and (c) flooded sand. Growth under the two water table depths compared favourably with the flooded and saturated conditions, with plants under the water table control treatments in some cases performing better in terms of plant performance than the saturated or flooded. Plant growth parameters measured were: Tiller number, root dry mass, shoot dry mass, rooting depth, total root length and plant height. Other parameters measured are: Solution nitrogen concentration, redox potential, growth medium temperature and pH levels. When IR36 was used the total root length, number of roots and tiller numbers were significantly greater for the plants in the saturated treatment but there were no significant differences in root mass, shoot mass, and shoot length with regards to water depth. When Azucena variety was used, the 15 cm treatment had the highest shoot mass in addition to the highest tiller numbers. In other parameters, the 15 cm treatment did not show a significant difference to the saturated treatment. The 30 cm treatment performed least well in all parameters measured. Plants under the flooded treatment had a significantly greater root dry mass, shoot dry mass and tiller number than the others. The plants grown under 15 cm water table depth had the least root mass. Tiller numbers for the plants under the 30 cm water table depth were greater than those under the 15 cm water table depth. Differences in plant development parameters generally appeared only after the fourth week. The data suggest that irrespective of the water treatment used, plant development trends remain the same indicating that in the first four weeks of rice growth much less water can be used without affecting plant development. Where Azucena and IR36 were both used the data suggest that water table control might be suitable for both varieties of rice. Differences in the amount of nitrogen present were seen to have had an impact on growth. Varying the form of nitrogen applied did not alter growth parameters to any appreciable extent implying that supply of nitrogen is more important than the form of nitrogen used. The effect of root properties and NH4+ transport through the soil on N uptake under different water regimes has been modelled. The model adequately predicted the root length densities required to explain N uptake rates. It is shown that root length densities increase with decreasing moisture content, allowing larger root length densities to compensate for low nutrient transport rates and although diffusion of nutrients increased with increasing moisture levels, nutrient uptake rates did not follow the same pattern. Rooting length densities and transport of nutrients are not shown to limit uptake of nutrients under any of the water treatments imposed. The feasibility of using water table control in the inland valleys of Ghana was also investigated by simulating the depth of the water table required in the dry season of the years 1996 and 1997. A comparison of water use under water table control and flooding irrigation showed that water savings were possible suggesting that water table control is feasible and beneficial in the inland valleys of Ghana.
13

Analysis of leaf morphology and photosynthesis in deletion mutants of rice (Oryza sativa L.)

Smillie, Ian R. A. January 2012 (has links)
As a plant operating the C3 photosynthetic pathway and commonly grown under tropical conditions of high light intensity and temperature, rice (Oryza sativa) displays high levels of photorespiration, to the detriment of photosynthetic efficiency. For this reason it is thought that improvements to net photosynthesis via an increased photosynthetic efficiency could provide significant gains in terms of grain yield. There is great interest in 1. Introducing CO2 concentrating mechanisms into C3 crop plants such as the C4 photosynthetic pathway in order to facilitate enhanced photosynthetic efficiency. This requires an understanding of C3 and C4 leaf development and establishing whether there is sufficient plasticity in the rice genome to produce plants with C4-like properties. 2. Improving existing C3 photosynthesis by means of increasing leaf thickness, vein density and investigation of the impacts of mesophyll cell size. It is in this context that a forward screen of approximately 100 mutant lines of the indica rice variety IR64 was developed at Nottingham to search for relevant changes in leaf morphology. Mutant seed produced using chemical mutagenesis (diepoxybutane and ethylmethanesulfonate) and irradiation (gamma and fast neutron) was supplied by the International Rice Research Institute (IRRI) in the Philippines. A rapid low resolution screen was devised using light microscopy of fresh, untreated hand cut leaf sections of plants at the leaf six stage. Seven mutant lines were identified as showing altered leaf morphologies and were termed alm mutants. alm1, alm5 and alm6 displayed a reduced interveinal distance between neighbouring veins, a common feature of C4 plants with Kranz anatomy, whilst alm1 and alm5 also displayed a reduction in the size of minor veins. alm3 and alm4 produced significantly thicker leaves than wild type plants, whilst the leaves of alm7 were significantly thinner. A detailed anatomical characterisation of leaf structure revealed that alm3, alm4 and alm5 plants all displayed a significant reduction in the size of mesophyll cells and that for all the mutant lines, the distance between veins was strongly correlated with mesophyll cell size rather than the number of mesophyll cells spanning the interveinal regions. Physiological properties of the alm lines were investigated using infra-red gas analysis (IRGA) measurements of gas exchange and chlorophyll fluorescence. It was shown that none of the mutant lines displayed an increase in photosynthetic capacity when compared to wild type plants, even in lines which were shown to possess what was thought to be a favourable leaf anatomy, quite possibly a result of widespread effects of the mutation process. The alm1 line was shown to display interesting physiological responses, with almost no transpiration and a severely reduced photosynthetic capacity, yet functioning stomata and an unimpaired stomatal conductance. In conclusion, the future success of photosynthetic improvement in rice will rely on the screen of much larger numbers of mutant lines of rice and C4 plants in order to identify the genes determining key conserved morphological features such as interveinal cell number, cell size and the degree to which rice mesophyll cells are lobed.

Page generated in 0.0155 seconds