• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrato-complexes of some tri- and tetravalent metals

Howick, Christopher J. January 1989 (has links)
No description available.
2

The degradation and stabilisation of energetic rubbery propellant binders

Bunyan, Paul Frederick January 1995 (has links)
No description available.
3

Long term storage and usage of cryogenic propellants for a manned Mars mission

Ford, Mark January 1996 (has links)
The research is concerned with investigating the storage and usage of liquid Hydrogen and Oxygen over a long duration. For this purpose a mission was defined where these two propellants are used to transport a six man crew to Mars and back. The mission duration is a total of 972 days in length with a stopover time at Mars of 454 days. A baseline spacecraft is designed. The two driving philosophies behind the design are reliability and reusability. This baseline spacecraft design was used a a basis for analysing the extreme thermal environment and its impact on the propellant storage temperatures. Also it allowed the calculation of mass and propellant budgets. It was found that the Hydrogen fuel undergoes a change of phase when the vehicle is orbiting Mars. Hence a escape manoeuvre trajectory simulation was performed which analysed the escape trajectory, acceleration and duration, and assessed the impact on the initial Earth launch propellant budget. I addition, a number of trade-offs were performed in order to increase the efficiency of the propulsion system from its nominal design in which the Hydrogen gas is allowed to expand directly from the storage tanks through the engine. The optimum arrangement that was found was to bleed the gas into a small high pressure tank and allow the fuel to be heated by waste heat from the onboard nuclear reactor. The results indicated that not only does this provide a performance increase over the nominal system but also the amount of propellant required for this bum is smaller than the storable options considered in the literature. Hence this analysis demonstrates that Hydrogen and Oxygen can be stored and used over long periods, and that they can still provide a better propellant performance than storable options, even with the increased mass penalty associated with using them on a mission such a this one.
4

Modelling of multiphase multicomponent chemically reacting flows through packed beds

Koopmans, Robert-Jan January 2013 (has links)
Currently used rocket propellants such as hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine and nitrogen tetroxide are carcinogenic and toxic to the environment and therefore special protective measures are required when producing, transporting, storing and handling them. Employing alternatives could possibly save costs and this has revived the research interest in so called green propellants. Hydrogen peroxide is such a possible alternative. It requires a catalyst bed to decompose the liquid peroxide into steam and oxygen. The purpose of this work is to design numerical tools that describe the processes in the catalyst bed and subsequently employ these tools to predict the performance of the catalyst bed and investigate the influence of design choices on the performance. In contrast to the models described in the literature, the tools developed in this thesis are two fluid models. In order to test the reliability of the tools results are compared with experimental data. A single control volume two-fluid model has been developed to investigate the pressure drop over the catalyst bed and the influence of the shape and size of catalyst pellets on the pressure drop. Parametric studies with this model revealed that the Tallmadge equation gives a better prediction of the pressure gradient than the more traditionally employed Ergun equation. It was also found that for a given bed length cylindrical pellets with a diameter to length ratio of 2 or more give a lower pressure drop than cylindrical pellets, while achieving the same level of decomposition. A one-dimensional two-fluid model has been developed to obtain longitudinal variations of fluid properties. This model revealed that the catalyst bed can be divided into 3 sections: a pre-boiling region, rapid conversion region and a dry-out region. It was shown that most of the mass transfer takes place due to evaporation. A sensitivity analysis showed that the gas-liquid interfacial area hardly influences the results.

Page generated in 0.0165 seconds