• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 8
  • 5
  • 4
  • Tagged with
  • 304
  • 34
  • 30
  • 26
  • 23
  • 22
  • 22
  • 22
  • 22
  • 18
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Force determination of bimetal tube drawing on a mandrel or floating plug

Loke, Siew K. January 1979 (has links)
No description available.
232

Effects of microstructure and strain ageing on toughness of nuclear PWR reactor weld metals

Farron, Victoria Jane January 2010 (has links)
The effects of microstructure and prestraining and ageing on ductile-to-brittle transition temperature, fracture toughness and cleavage fracture resistance of a multi-pass low-alloy ferritic steel weld metal have been investigated. The weld metal simulated submerged arc welds used in the fabrication of Sizewell B power station reactor pressure vessel. The study aimed to investigate differences in mechanical properties of a single microstructure; asdeposited and reheated microstructures and subjected to various mechanical tests. Additionally, to simulate the effects of irradiation embrittlement a number of specimens were prestrained and then statically strain aged. Charpy impact transition curves had obvious trends depending upon microstructure and condition, with microstructure having a significant influence on the transition region and upper-shelf impact energy level. Prestraining and ageing the specimens promoted an increase in the ductile-to-brittle transition temperature and reduction the upper shelf energy level for both microstructures. The extremes of behaviour were defined by the reheated as-received and as-deposited prestrained and aged conditions, being the “best” and “worst conditions” respectively. This trend was repeated with the cracktip opening displacement tests. A combination of factors decreases toughness for the asdeposited prestrained and aged condition, which exhibited the highest yield stress, and lowest work hardening exponent and the best cleavage fracture resistance. Such factors result in marked upwards shifts in Charpy impact transition curves and decease in the crack growth resistance curves.
233

Precision cold forming modelling, interfacial thermal parameter investigation and tool design optimisation

Chen, Xuesheng January 2002 (has links)
Precision cold forming process modelling, thermal contact conductance and optimum shrink-fitted die with profiled interference were studied. The aims of this work have been achieved using analytical, numerical and experimental approaches to the relevant subjects. Several features of the work are presented: (i) an application of systematic modelling IDEFO language, (ii) an equivalent asperity of surface that enables FE simulation of surface deformation and (iii) a shrink-fitted die with profiled interference, which enables compensation for component-error and necessary die surface pre-stresses. Cold forming process was modelled systematically by IDEFO language in general. The most often used iterations, including design and error-compensation procedures, were constructed; basic activities, inputs, resources and constraints were defined and decomposed. These provide a general procedure for precision cold forming design and a base for the following research of this work. A thermal contact conductance (h -value) experimental investigation was conducted based on steady-temperature measurements and devices. h -value as a function of surface texture and interfacial pressure was experimentally investigated; typically, the value changes from 10 kWm⁻²K⁻¹ to 150 kWm⁻²K⁻¹ for changes in surface texture from Ra = 0.3 0.5 , um to Ra =3-5, um , depending on interfacial pressure (<180 MPa). Based on surface measurements and mathematical work, an equivalent asperity for isotropic surface was presented to represent surface geometry. Uniqueness of the equivalent asperity enables simulation of surface deformation by FE technology. Surface textures under interfacial pressure up to 300 MPa were successfully predicted by FE simulations, results being in agreement with surface measurements. h -value is defined as a function of either contact area ratio or local interfacial pressure; a FE model and an approach of integration of local h -value were dev eloped; value of h was successfully predicted by the established FE model and integration. A profiled interference for shrink-fitting die was designed for component-errors compensation and die surface pre-stress. This was achieved by considering the relationship between die pre-deflection and the profiled interference by FE simulations and a minimisation procedure. Both, the equation and minimisation procedure to determine the profiled interference were established analytically. Uniform die surface direct compensation is combined with shrink-fitted die. Component-errors can be controlled to within a few microns.
234

Critical study of high efficiency deep grinding

Johnstone, Iain January 2002 (has links)
The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experimental and theoretical means applied to two widely used materials, M50 bearing steel and IN718 nickel based superalloy. It has been shown that this grinding method using a stiff grinding centre such as the Edgetek 5-axis machine is a viable process. Using a number of experimental designs, produced results which were analysed using a variety of methods including visual assessment, sub-surface microscopy and surface analysis using a Scanning Electron Microscope (SEM), residual stress measurement using X-Ray Diffraction (XRD) techniques, Barkhausen Noise Amplitude (BNA) measurements, surface roughness and Vickers micro-hardness appraisal. It has been shown that the fundamentals of the HEDG process have been understood through experimental as well as theoretical means and that through the various thermal models used, grinding temperatures can be predicted to give more control over this dynamic process. The main contributions to knowledge are made up of a number of elements within the grinding environment, the most important being the demonstration of the HEDG effect, explanation of the phenomenon and the ability to model the process. It has also been shown that grinding is a dynamic process and factors such as wheel wear will result in a continuous change in the optimum grinding conditions for a given material and wheel combination. With the significance of these factors recognised, they can be accounted for within an industrial adaptive control scenario with the process engineer confident of a more efficient use of time and materials to produce a higher quality product at lower cost.
235

Parallel diffractive multi-beam ultrafast laser micro-processing

Kuang, Zheng January 2011 (has links)
During the last decade, ultrashort pulse lasers have been employed for high precision surface micro-structuring of materials such as metals, semiconductors and dielectrics with little thermal damage. Due to the ultra high intensity of focussed femtosecond pulses (I > 1012W/cm2), nonlinear absorption can be induced at the focus leading to highly localised material ablation or modification. This is now opening up applications ranging from integrated optics, through multi-photon induced refractive index engineering to precision surface modification for silicon scribing and solar cell fabrication. To ensure non thermal material processing, the input fluence (F) of the ultrashort pulse laser must be kept in the low regime (F ∼ 1Jcm-2), a few times above the well defined ablation threshold. Accordingly, μJ (10-6J) level pulse energy input is often required for ultrashort pulse laser fine micro/nano-surface structuring. Running at one kilohertz repetition rate, many current ultrashort pulse laser systems can provide mJ (10-3J) level output pulse energy. Accordingly, significant attenuation of the laser output is required for many applications and hence causes a great deal of energy loss. With this limitation in mind, holographic multiple beam ultrashort pulse laser processing, where the mJ pulse energy is split into many desired diffracted beams with arbitrary geometric arrangement, is proposed in this thesis. The multi-beam patterns are generated by phase modulation using computer generated holograms (CGHs) which are displayed on a Spatial Light Modulator (SLM). The ability to address these devices in real time and synchronize with scanning methods adds an additional flexibility to the processing. The results obtained in this thesis demonstrate high precision micro-fabrication of different kinds of materials with greatly increased processing efficiency and throughput, showing many potential industrial applications.
236

Understanding porosity formation and prevention when welding titanium alloys with 1μm wavelength laser beams

Blackburn, Jonathan January 2011 (has links)
Keyhole laser welding is a joining technology characterised by the high focussed power density applied to the workpiece, facilitating deep penetration at high processing speeds. High aspect-ratio welds produced using this process invariably have narrow heat-affected-zones and minimal thermal distortion compared with traditional arc welding processes. Furthermore, the ability to process out of vacuum and the easy robotic manipulation of fibre optically delivered 1μm wavelength laser beams, allow keyhole laser welding to process geometrically complex components. The widespread uptake of keyhole laser welding for the production of titanium alloy components in the aerospace industry has been limited by the stringent weld quality requirements. Producing welds with levels of subsurface weld metal porosity content meeting the required weld quality criteria has been the primary obstacle. Here, three techniques for controlling the levels of weld metal porosity when welding titanium alloys with Nd:YAG rod lasers have been developed. Characterisation of the welding processes using high speed photography and optical spectroscopy, have allowed an original scientific understanding of the effects these methods have on the keyhole, melt pool and vapour plume behaviour. Combining this with a thorough assessment of the weld qualities produced, has enabled the effects of these process behaviours on the formation of weld metal porosity to be determined. It was found that with the correct process parameters a directed gas jet and a dual focus laser welding condition can both be used to reduce the occurrence of keyhole collapse during Nd:YAG laser welding. The directed gas jet prevents the formation of a beam attenuating vapour plume and interacts with the molten metal to produce a stable welding condition, whereas the dual focus laser welding condition reduces fluctuations in the process due to an enlarged keyhole. When applied, both techniques reduced the occurrence of porosity in the weld metal of full penetration butt welds produced in titanium alloys. A modulated Nd:YAG laser output, with the correct waveform and modulation frequency, also reduced the occurrence of porosity in the weld metal compared with welds produced with a continuous-wave output. This was a result of an oscillating wave being set-up in the melt pool which manipulated the keyhole geometry and prevented instabilities in the process being established. In addition, the potential for welding titanium alloys to the required weld quality criteria with state-of-the-art Yb-fibre lasers has been assessed. It was found that the high power densities of suitably focussed laser beams with excellent beam quality, were capable of producing low-porosity full penetration butt welds in titanium alloys without the techniques required for laser beams with a lower beam quality. These new techniques for keyhole laser welding of titanium alloys will encourage the uptake of keyhole laser welding for producing near-net-shape high-performance aerospace components. The advantages offered by this joining technology include high productivity, low heat input and easy robotic automation.
237

Surface modification for corrosion protection of steel pipes

Morshed, Ali January 2002 (has links)
No description available.
238

Statistical analysis of deterministic textures in steel sheet production

Porrino, Alessandre January 2004 (has links)
Textured surfaces are universally adopted in the steel sheet production industry, and manufacturers are continuously improving the quality of the finished products through intense research in the surface characterisation field. Deterministic Surfaces are textured with specifically designed rolls in order to present a certain degree of regularity, which allows better control over the functional behaviour of the metal sheets. The regularity of the texture impressed on the steel sheets also allows unconventional approaches to surface characterisation and to the assessment of the texture's structure. Statistical analysis is the most effective way to target the isolation of the deterministic part of the surface, which represents the desired product, from the stochastic part, called ‘noise’ and associated with the inaccuracies of production and measurement. This work addresses the problem of characterisation of deterministic textures through statistical analysis, proposing innovative filtering techniques aimed at the realisation of an On-line Process Control System. Firstly the techniques proposed are theoretically formulated and studied, addressing in particular the physical meaning of the geometrical parameters extracted through statistical analysis of highly correlated portions of the textures. A method for isolating the deterministic textures present on a surface, called the Statistical Surface Filter, is presented and discussed in detail, and tested on existing laboratory samples. Secondly the filter is applied to preliminary measurements acquired by an innovative on-line measurement system currently under development, and evidence is shown that the technique is effective in separating the information regarding the regular patterns from the stochastic noise. The possible applications to on-line Statistical Process Control are discussed. Thirdly, the Statistical Surface Filter is tested on a set of measurements representing texturing rolls and textured sheets with different characteristics; statistical analysis of the surface parameters extracted from the filtered surfaces show that the technique allows the assessment of the different contributions of the various stages of the texturing process to the final product. Finally, a software package is implemented for the practical application of the filtering techniques and the parameters extraction; the algorithms that perform the statistical filtering are described and discussed, concluding with the operations of optimisation and fine-tuning for production-line implementation.
239

Cytotaxonomic Studies On The Genus Salvia (labiatae) In Turkey

Inanc Gok, Tugba 01 December 2009 (has links) (PDF)
The genus Salvia L. is significantly important with regard to both its worldwide distribution and usage areas including food, medical and perfumary industries. In this current study, it is targeted to address the chromosome numbers and karyomorphology of the ten species and one variety of the genus Salvia. All of the eleven taxa examined in this study are economically significant and nine of these are endemic to Turkey. To define the chromosome numbers and karyomorphology of these eleven taxa somatic chromosomes of the each were examined. Mitotic metaphase chromosomes were obtained from root meristems of germinating seeds, which were pre-treated in &amp / #945 / -bromonaphtalene at 4&ordm / C for 16 h, then fixed in Carnoy solution (3 parts of ethanol: 1 parts of glacial acetic acid) at 4&ordm / C for 24h and stored in 70 % ethanol. Fixed root tips were stained in 2 % aceto-orcein and squashed in a drop of 45 % acetic acid. Long arm, short arm, total length of the each chromosomes were measured / relative length, arm ratio, centromeric index of the each chromosome were calculated. Karyogram and haploid idiograms were drawn by computer-aided analysis programme (Bs200pro). A cluster analysis of the karyotype data was carried out to examine karyotype similarity among taxa. Somatic chromosome numbers have been counted as 2n=2x=14 for the endemic taxa S. divaricata Montbret &amp / Aucher, S. euphratica Montbret &amp / Aucher ex Bentham (var. leiocalycina (Rech. fil.) Hedge) and S. recognita Fisch. &amp / Mey. / 2n=2x=14-1B for Salvia rosifolia Sm. / 2n=20 for S. longipedicellata Hedge, S. vermifolia Hedge &amp / Hub.-Mor. and S. yosgadensis Freyn &amp / Bornm. / 2n=2x=22 for S. aethiopis L., S. cilicica Boiss. &amp / Kotschy, S. hypargeia Fisch. &amp / Mey. and 2n=2x=32 for S. napifolia Jacq. respectively. In general, the chromosomes are short with median and submedian centromeres. The current study is essential for being the first report about chromosome numbers and karyomorphology of the six endemic taxa, namely S. divaricata, S. euphratica var. leiocalycina, S. longipedicellata, S. rosifolia, S. vermifolia and S. yosgadensis. Moreover, in spite of the chromosome numbers of S. aethiopis, S. cilicica, S. hypargeia and S. recognita are known, this research is the first study for their karyomorphologies.
240

Experimental and modelling studies of electronic packaging interconnections formed with lead-free materials

Rizvi, Mohammed Jahir January 2007 (has links)
Both the experimental and the modelling techniques have been investigated and used to investigate factors that influence the formation, quality and reliability of electronic packaging interconnections formed using solder alloys and anisotropic conductive films (ACFs). The wetting behaviours of new lead-free solders (i.e. Sn-2.8Ag-0.5Cu-1.0Bi and Sn-0.7Cu-0.3Ni) have been evaluated using the wetting balance test. This assessment ahs been performed for three soldering temperatures with three different types of fluxes. The results have been compared with the conventional Sn-Pb, Sn-Ag-Cu and Sn-Cu solders. It has been found that the wettability of the lead-free solders is not as good as that of the Sn-Pb solder. The additions of Bi into the Sn-Ag-Cu solder and Ni into the Sn-Cu solder improve the wettability that is strongly dependent on the type of the flux and the soldering temperature. In general, NC-flux is suitable for Cu-substrate whereas Ws-flux is suitable for Ni substrate, but for the Sn-2.8Ag-0.5-Cu solder on Ni substrate, good wettability has been observed with both the NC and the R-type fluxes. Computational modelling of this test has revealed that the increase in the depth and the radius of the solder bath has little effect on the wetting force, but the meniscus height decreases when the bath radius exceeds 14 mm. Dissolution of solid metals into liquid solders has been investigated through experiments and computer modelling. Microstructural studies have been carried out and the growth behaviours of the intermetallic compounds (IMCs) during wetting, solidification and isothermal ageing have been investigated. It has been found that the addition of Bi into the Sn-Ag-Cu solder reduces the consumptions of the substrates and suppresses the growth of IMCs during wetting and ageing. Similarly, the addition of Ni into the Sn-Cu solder reduces both the consumptions of the substrates and the growth of IMCs during wetting and short term ageing but enhances the growth of IMCs during long term ageing. Experimental and computer modelling techniques have been used to measure the temperature in the ACF during bonding. The temperature in an ACF joint becomes very close to the required maximum bonding temperature within the first 1 s of bonding time. The impact of this temperature on the cure process and on the ACF physical properties such as loss modulus, storage modulus, and glass transition temperature has been investigated. It has been found that the higher the bonding temperature the more the curing degree of ACF is. Rapid changes occur in the physical properties of ACF at temperatures above the glass transition point. When the ACF is cured for a long time at a high temperature, the physical properties may degrade. The adhesion strength of ACF joint increases as the curing degree increases. However, when the ACF joint undergoes a thermal aging treatment, the adhesion strength increases for the samples bonded at lower temperatures, but decreases for the samples bonded at higher temperatures. The rate of increase in the contact resistance is dramatically higher for the samples bonded at lower temperatures than for those bonded at higher temperatures. Computer modelling of the isothermal ageing of ACF joint confirms that the thermal load causes the expansion of the adhesive matrix and generates high stresses on the conductive particle. This may result in the permanent damage of the outermost conductive metallic layers as well as electrical failure. The effect of external bending loads on the electrical reliability of ACF-based interconnection has also been studied through computer modelling. The analysis reveals that ACF thickness increases at the corners of the chip-ACF joint more than that of the middle position. This causes a gap between the chip and the substrate results in the failure of the electrical interconnections.

Page generated in 0.0327 seconds