• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 24
  • 24
  • 24
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Surface fitting for the modeling of plant leaves

Loch, B. Unknown Date (has links)
No description available.
22

Critical Sets in Latin Squares and Associated Structures

Bean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
23

Critical Sets in Latin Squares and Associated Structures

Bean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
24

Critical Sets in Latin Squares and Associated Structures

Bean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.

Page generated in 0.0722 seconds