31 |
Mobile IP Handover for WLANFalade, Olumuyiwa, Botsio, Marcellus January 2010 (has links)
The past few years have seen great increases in the use of portable devices like laptops, palmtops, etc. This has also led to the dramatic increase demand on wireless local area networks (WLAN) due to the flexibility and ease of use that it offers. Mobile IP and handover are important issues to be considered as these devices move within and between different networks and still have to maintain connectivity. It is, therefore, imperative to ensure seamless mobile IP handover for these devices as they move about. In this thesis we undertake a survey to describe the real processes involved in mobile IP handover in WLAN environment for different scenarios. Our work also identifies individual sources of delay during the handoff process, the sum total of which makes up the total latency. Other factors that could militate against the aim of having a seamless handoff in an inter-subnet network roaming were also considered as well as some proposed solutions. These factors are security, packet loss and triangle routing.
|
32 |
Experimental Analysis of Opportunistic Communication for Vehicular Internet AccessHadaller, David January 2008 (has links)
This thesis examines the problem of using 802.11 hotspots for vehicular Internet access. In this access paradigm, a user in a vehicle performs batch transfers by opportunistically communicating with roadside 802.11 access points while driving along a highway. Despite the short connection duration, a significant amount of data can be transferred. Because complete coverage is not needed, this method of Internet access provides a low-cost alternative to using cellular technology for applications that can tolerate some delay and require large data transfer such as sending or receiving music, movies, or digital photographs.
Although vehicular opportunistic connections offer the potential to transfer a large of amount of data, utilizing this potential is non-trivial because existing transport and data-link layer network protocols were not designed for this use.
This thesis presents an experimental analysis of transport and data-link layer protocol operation at a level of detail not previously explored. We identify ten problems that cause a reduction of up to 50% of the amount of data that could have been transferred in this scenario. Our primary finding is that transmission errors during connection setup and inadequate MAC data rate selection are the main causes of the under-utilization of the connection. Based on these findings we make preliminary recommendations for best practices for using vehicular opportunistic connections. In particular, we argue that overall throughput could be significantly improved if environmental information was available to the lower layer network protocols.
|
33 |
Performance Enhancement of IEEE 802.11 by Spatial reuseLee, Wen-Shan 20 June 2003 (has links)
We question about multihop gets better performance than single hop in wireless networks. In this paper we design a new and simple multihop transmission model called PESR, performance enhancement of IEEE 802.11 by spatial reuse. We elect an intermediate node which between a source-destination pair for forwarding packets to become multihop instead of directly transmission from the source to the destination. By this way, we will have more links at the one time, the channel utilization should be grown and we will get better system performance. However, there is much overhead we have not considered. We will discuss the detail about overhead in coming sections. In fact, the results of simulation show that the performance is not present very well. And we wonder if the multihop in wireless networks is a pretty good idea.
|
34 |
Adaptive protocols for mobile ad hoc networksHolland, Gavin Douglas 17 February 2005 (has links)
Recent advances in low-power technologies have resulted in the proliferation of
inexpensive handheld mobile computing devices. Soon, just like the Internet empow-
ered a whole new world of applications for personal computers, the development and
deployment of robust ubiquitous wireless networks will enable many new and exciting
futuristic applications. Certain to be an important part of this future is a class of
networks known as "mobile ad hoc networks." Mobile ad hoc networks (or simply
"ad hoc networks") are local-area networks formed "on the spot" between collocated
wireless devices. These devices self-organize by sharing information with their neigh-
bors to establish communication pathways whenever and wherever they are. For ad
hoc networks to succeed, however, new protocols must be developed that are capable
of adapting to their dynamic nature.
In this dissertation, we present a number of adaptive protocols that are designed
for this purpose. We investigate new link layer mechanisms that dynamically monitor
and adapt to changes in link quality, including a protocol that uses common control
messages to form a tight feedback control loop for adaptation of the link data rate
to best match the channel conditions perceived by the receiver. We also investigate
routing protocols that adapt route selection according to network characteristics. In
particular, we present two on-demand routing protocols that are designed to take
advantage of the presence of multirate links. We then investigate the performance of
TCP, showing how communication outages caused by link failures and routing delays
can be very detrimental to its performance. In response, we present a solution to this
problem that uses explicit feedback messages from the link layer about link failures to
adapt TCP's behavior. Finally, we show how link failures in heterogeneous networks
containing links with widely varying bandwidth and delay can cause repeated "modal"
changes in capacity that TCP is slow to detect. We then present a modifed version
of TCP that is capable of more rapidly detecting and adapting to these changes.
|
35 |
Design of a Cross-Layer Handover Scheme for Data TransmissionHsia, Ming-chun 14 September 2007 (has links)
IEEE 802.11-based wireless local area networks (WLANs) have been set up in many public places in last few years. It provides convenient network connectivity to mobile nodes (MNs) and allows users moving from one wireless network to another. With mobility protocol support, such as Mobile IPv6 (MIPv6), people can roam across wireless IP subnets without loss of network-layer connectivity. However, the handover latency may make users feel uncomfortable in MIPv6. To support seamless handover, an enhanced MIPv6 scheme, Fast Handovers for Mobile IPv6 (FMIPv6)[13], was been proposed. In order to further reduce the handover latency, integrating the lower layer procedure with the upper layer procedure is necessary. Unfortunately, when integrating the IEEE 802.11-based standard with FMIPv6, FMIPv6 always fails to perform predictive handover procedure. This may make the handover procedure result in reactive handover. It is because of the protocol nature of IEEE 802.11 and the weak relation between IEEE 802.11 and FMIPv6. Furthermore, a MN can¡¦t receive packets destined to it when it sends the Fast Binding Update (FBU) to the original access router (OAR). This would cause unnecessary packet loss and make the redictive
handover have more packet loss then reactive. Those issues will cause quality of services degradation and make real-time applications unreachable. In this dissertation, a low-latency MIPv6 handover scheme will be proposed. It is a FMIPv6-based scheme
which is assisted by an active-scan link layer scheme. It has the advantage of FMIPv6 and can reduce unnecessary packet loss when the handover occurs. Also, with the assistance of the active scheme, it can avoid the longest phase that IEEE 802.11 will
enter, and can lower the handover latency.
|
36 |
Terminaison en temps moyen fini de systèmes de règles probabilistesGarnier, Florent. Kirchner, Claude January 2007 (has links) (PDF)
Thèse de doctorat : Informatique : INPL : 2007. / Titre provenant de l'écran-titre. Bibliogr.
|
37 |
Gestion des déplacements de terminaux IPv6 mobiles assistée par géolocalisationMontavont, Julien Noël, Thomas. January 2007 (has links) (PDF)
Thèse doctorat : Informatique : Strasbourg 1 : 2006. / Titre provenant de l'écran-titre. Bibliogr. 9 p.
|
38 |
Defending IEEE 802.11-based networks against denial of service attacks /Tan, Boon Hwee. January 2003 (has links) (PDF)
Thesis (M.S. in Computer Science)--Naval Postgraduate School, December 2003. / Thesis advisor(s): William J. Ray, Man-Tak Shing. Includes bibliographical references (p. 115). Also available online.
|
39 |
Trådlös kommunikation för AnybusHeigren, Robert, Otterdahl, Björn January 2007 (has links)
The industry struggles with problems concerning physical damage to wires and communication in remote areas. Introducing a wireless network can provide a solution to these issues. However, introducing wireless communication comes with a whole new line of problems that will be covered in this report. By utilizing the wireless communication standard IEEE 802.11 a product can easily be integrated into an existing wired Ethernet network (IEEE 802.3). An introduction to the standard IEEE 802.11 and a summary of existing products utilizing the standard for embedded systems will be given throughout the report. This report also tries to explain key parameters for wireless communication in an industrial environment. This project also consists of a design and an implementation part, where the chosen IEEE 802.11 standard will be integrated into the existing wired Anybus-S Ethernet module from the company HMS Industrial Networks. The integration part of the project has resulted in a working prototype called Anybus-S Ethernet Wireless that utilizes the IEEE 802.11b/g standard for transferring data. The project has been really fun to participate in and it has been successful in the terms that a working prototype exists, and the authors have gained the knowledge in the subject as intended.
|
40 |
Strömmande video i trådlösa mesh nätverk : Streaming video in wireless mesh networksHällström, Magnus January 2014 (has links)
This document’s content is the final report of the master´s dissertation Magnus Hällström did during springtime of year 2013. The dissertation’s subject is 802.11s wireless mesh networks with streaming video as a focus point. During the dissertation a wireless mesh network was set up with different attached cameras for streaming video. A sun panel solution was also tested with the goal of creating a package with a self-configuring network node streaming video, powered by nothing but solar energy.
|
Page generated in 0.0179 seconds