• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferritic-martensitic steel subjected to equal channel angular extrusion

Foley, David Christopher 15 May 2009 (has links)
Modified 9Cr-1Mo ferritic-martensitic steel (T91) has been extensively investigated as a structural material for GenIV nuclear reactors and Accelerator Driven Transmutation systems. One attractive characteristic of this steel in these applications is its superior radiation damage tolerance in comparison to typical austenitic stainless steels such as 316L. In some GenIV applications, it also has a significantly higher corrosion resistance. Further improvement of both is necessary if GenIV designs are to become commercially viable. Other work has shown an improvement in radiation damage tolerance via cold rolling or sputtering nanoscale multilayered films. Additionally, corrosion resistance can be improved by homogenizing the microstructure. Further, these changes can improve the strength of the material. However, there has been no fabrication of bulk ultra fine grain ferritic-martensitic steel candidates that might offer these avenues of improvement. This work demonstrates the refinement and homogenization of T91 by Equal Channel Angular Extrusion (ECAE) and heat treatment. Processing temperature and strain level were varied to produce multiple levels of refinement. Materials were characterized by microhardness, tensile testing, x-ray diffraction and transmission electron microscopy. An ultra-fine, highly misoriented and homogeneous microstructure was achieved in the material. Refinement was demonstrated both in ferritic and ferritic-martensitic compositions of the steel. Microhardness increased by as much as 70% and ultimate tensile strength by 80%. More significantly, tensile strength was improved by 40% without decreasing ductility.
2

High temperature oxidation and NaCl-induced accelerated corrosion of hot-dip aluminized 9Cr-1Mo and 310 stainless steel

Tsaur, Charng-Cheng 17 February 2005 (has links)
The behaviors of high temperature corrosion on hot-dip aluminized on 9Cr-1Mo and 310 stainless steels when catalyzed by NaCl and cyclic heating environment were studied experimentally. The corrosion behavior and morphological development were investigated by weight gain kinetics, metallographs, depths of attack, metal losses, and X-ray analyses. The results of 310SS deposited with salt mixtures show that weight gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits display multi-stage growth rates. NaCl is the main corrosive specie in high-temperature corrosion involving mixtures of NaCl/Na2SO4 and is responsible for the formation of internal attack. Uniform internal attack is the typical morphology of NaCl-induced hot corrosion, while the extent of intergranular attack is more pronounced as the content of Na2SO4 in the mixture is increased. The thermal-cycling test results of 310SS deposited NaCl and coated 7wt%Si/93wt%Al show that the aluminized layers have good corrosion resistance during the first four cycles of testing, while degradation occurs after testing for five cycles. The reason for degradation of aluminized layers is attributed to the formation of interconnecting voids caused by aluminum inward diffusion, chloridation/oxidation cyclic reactions and the penetration of molten NaCl through the voids into the alloy substrate. The 9Cr-1Mo steels coated with 7wt%Si/93wt%Al oxidized at 750, 850, and 950°C in static air show that oxidation kinetics followed a parabolic rate law at 750 and 850 °C. The cracks propagated through the FexAly layer due to the growth of brittle FeAl2 and Fe2Al5 at 750 and 850°C. The voids condensed in the interface of intermetallics and substrate are attributed to the Kirkendall effect. At 950°C, the fast growing aluminide layer has a different expansion coefficient than oxide scale, leading to scale cracking, oxygen penetration, and internal oxidized, evidenced by a rapid mass gain.
3

Microstructure and Damage Evolution During Short Term Creep of Modified 9Cr-1Mo Steel used in Generation IV Nuclear Energy Systems

Tammana, Deepthi 27 October 2014 (has links)
No description available.
4

Fluage à 500°C d'un joint soudé d'un acier 9Cr-1Mo modifié. Evolution de la microstructure et comportement mécanique

Vivier, Florian 23 March 2009 (has links) (PDF)
Dans le cadre de la mise au point des nouveaux réacteurs de la Génération IV, la France s'attache notamment à la conception du Very High Temperature Reactor, qui prévoit l'utilisation de matériaux devant résister à plus hautes températures et plus longtemps. Parmi les matériaux existants, AREVA a fait le choix de déterminer le comportement mécanique du Grade 91 (Fe-9Cr-1Mo-Nb-V) pour équiper les gros composants. Ces gros composants sont des structures soudées, si bien que les soudures, points faibles potentiels, doivent être étudiées. Les trois partenaires industriels (AREVA, CEA, EDF) ont lancé une étude commune en octobre 2005 avec le Centre des Matériaux sur le fluage d'un Grade 91, métal de base et joint soudé, à 500°C pour des durées d'exposition allant jusqu'à 4500 h. <br /><br /> Des essais de vieillissement thermique, de traction et de fluage à 450°C et 500°C, sur du métal de base et du joint soudé ont été réalisés. Différentes géométries d'éprouvettes de fluage de joint soudé ont été testées. Aucune évolution significative de la microstructure n'a été constatée en termes de nature et de taille de précipités et de dimension de la sous-structure par rapport à la microstructure avant essai. Peu d'endommagement par cavitation a pu être mis en évidence. Le mécanisme qui conduit à la ruine finale du matériau après fluage est de type viscoplastique à 500°C, contrairement à 625°C où l'endommagement par cavitation est la cause principale de la rupture des éprouvettes de fluage pour les temps d'exposition les plus longs.<br /><br />A partir des courbes expérimentales de fluage du métal de base et du joint soudé entier, un modèle phénoménologique de comportement de type Norton à 500°C est proposé. L'exposant de Norton du métal de base est de 19, alors que celui du joint soudé entier est de 18. Ces valeurs suggèrent la présence de contraintes internes et indiquent que le glissement des dislocations peut être le mécanisme qui contrôle la déformation par fluage. Les éprouvettes de joint soudé cassent dans le métal fondu en fluage et dans le métal de base en traction. La zone affectée thermiquement n'a pas de rôle visible dans la résistance de la structure à 500°C, du moins jusqu'à 4500 h. De ce fait, une décomposition en série du comportement en fluage du joint soudé entier peut être faite à l'aide de ceux du métal fondu et du métal de base. Connaissant le comportement du métal de base et du joint soudé entier, il est possible d'ajuster les paramètres du modèle au métal fondu. Une autre méthode d'ajustement des paramètres du métal fondu est également proposée à partir des essais sur une géométrie amincie contenant uniquement du métal fondu. Les résultats de ces modèles sont cohérents avec les données de la littérature. Ce modèle permet de prédire le temps à rupture à plus long terme, en bon accord avec des résultats du CEA, avec des outils simples de modélisation.

Page generated in 0.0148 seconds