• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3741
  • 1522
  • 521
  • 350
  • 108
  • 88
  • 73
  • 70
  • 64
  • 57
  • 36
  • 30
  • 30
  • 30
  • 30
  • Tagged with
  • 7795
  • 2019
  • 1229
  • 1227
  • 723
  • 711
  • 684
  • 648
  • 579
  • 559
  • 528
  • 518
  • 496
  • 471
  • 455
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Hydrogen peroxide formation by zinc oxide in ointments /

Lozada, Hector Antonio January 1958 (has links)
No description available.
602

Phase relations in the systems titania and titania--boric oxide /

Beard, William Clarence January 1965 (has links)
No description available.
603

Investigation of alumina particulate characterization and microstructural evaluation /

Bennett, Russell Bernard January 1970 (has links)
No description available.
604

The effect of oxygen pressure on the free vacuum evaporation rates of zinc oxide single crystal basal faces /

McVicker, Joseph Edgar January 1974 (has links)
No description available.
605

Measurement of carbon monoxide and nitric oxide infrared spectra employing a Michelson goniometer /

Chen, Da-Wun January 1975 (has links)
No description available.
606

The sublimation of basal surfaces of zinc oxide single crystals under ultraviolet illumination /

Carey, Donald Albert January 1976 (has links)
No description available.
607

The Oxidation of Methanol on Cr₂O₃ (101̅2) Single Crystal Surfaces

Mensch, Michael W. 04 April 2003 (has links)
The reaction of methanol with the nearly-stoichiometric and oxygen-terminated surfaces of Cr₂O₃ (101̅2) was studied using thermal desorption spectroscopy and x-ray photoelectron spectroscopy. Dissociative adsorption of methanol occurs on the nearly-stoichiometric surface and is attributed to the presence of cation/anion site-pairs. An array of products including CH₄, CH₂O, CO, CO₂, and H₂ are produced above 550 K on the nearly-stoichiometric surface. Monolayer coverage of methanol yields a 58% conversion to products. Of these products, selectivity to CO is the highest (41%), followed by CH₂O (28%), CH₄ (24%), and CO₂ (7%). At higher temperatures methoxides reversibly undergo dehydrogenation and nucleophilic from lattice oxygen to form dioxymethylene. Hydrogenation of methoxides leads to the formation of CH₄ and CH₃OH above 550 K. Formate is formed as a surface intermediate by reversible dehydrogenation of dioxymethylene. Formaldehyde is produced via C-O bond cleavage of dioxymethylene, and the decomposition of formate yields CO, CO₂, and H₂. The oxygen-terminated surface is unreactive for methanol dissociation due cation site blocking by terminal chromyl oxygen. / Master of Science
608

Colloidal Cerium Oxide Nanoparticle: Synthesis and Characterization Techniques

Clinton, Jamie C. 25 February 2008 (has links)
Fluorescence spectra and UV-Vis absorption spectra are collected on cerium oxide nanocrystalline particles. While CeO2 is the stable form of bulk cerium oxide, ceria nanoparticles exhibit a nonstoichiometric composition, CeO2-γ, due to the presence of oxygen vacancies and the formation of Ce2O3 at the grain boundaries. The Ce(III) ions, which are more reactive and therefore more desirable for various applications, are created by oxygen vacancies, which act as defects in the CeO2-γ crystal lattice. These defects form trap states in the band gap of CeO2, which can be seen in the absorption spectra. Ce(III) is required for fluorescence of the ceria nanoparticles while Ce(IV) is involved in only nonradiative transitions. The optical spectroscopy results show that the ceria samples have different ratios of Ce(III) ions to Ce(IV) ions, which is verified by x-ray photoemission spectroscopy (XPS). / Master of Science
609

Insights Into Nitric Oxide Reactivity With Iron-containing Enzymes

Martin, Christopher P. 01 January 2024 (has links) (PDF)
Nitric oxide (NO) is a small, gaseous molecule that is toxic to life at high doses but serves a crucial role in biological processes at lower concentrations, including: cell signaling, immune response, and more recently, as a synthon in the biosynthesis of natural products in bacteria. Metalloenzymes are incredibly versatile catalysts that enable chemistry that often, still has no comparable laboratory reaction. TxtE, a cytochrome P450 (CYP), utilizes NO as a co-substrate along with dioxygen (O2) to catalyze the regioselective nitration of L-tryptophan (Trp) to produce 4-NO2-Trp. Work in this dissertation established that the TxtE ferric-superoxo intermediate is resistant to reduction, which facilitates its reaction with diffusible NO en route to an , as yet,-uncharacterized nitrating species. Furthermore, it is shown that an outer-sphere protein residue influences the nitration chemistry of TxtE. A Thr250Ala mutant version of TxtE characterized and found to lack all nitration ability despite maintaining cofactor incorporation and retaining competence for formation of the ferric-superoxo intermediate. Separately, experiments performed with wild-type TxtE demonstrate that analogs of Trp affect the lifetime of the ferric-superoxo intermediate and enable substrate hydroxylation. Additionally, a non-heme, diiron enzyme from Mycobacterium kansasii (MkaHLP) was previously established to possess NO peroxidase activity. In this dissertation, a Tyr54Phe mutant form of MkaHLP was characterized and found to have greatly diminished NO peroxidase activity due to the removal of the characteristic tyrosine ligand to the diiron site. Implications of this change in activity are discussed in the relevant section.
610

DESIGN, FABRICATION AND CHARACTERISTICS OF THE N-WELL CMOS PROCESS.

Hsieh, Jaw-Haw. January 1983 (has links)
No description available.

Page generated in 0.0913 seconds