• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue and fracture testing and analysis on four engineering materials

Ziegler, Brett Martin 30 April 2011 (has links)
Fatigue and fracture testing and analyses were performed on four engineering materials: a low-strength aluminum alloy (D16CzATWH), a high-strength aluminum alloy (Al7050-T7351), a low-strength steel (A36 steel), and a high-strength steel (9310 steel). Large-crack testing included compression precracked constant amplitude and compression precracked load reduction over a wide range of stress ratios. Single- and multiple-spike overload tests were conducted on some of the materials. Fatigue and small-crack testing were also performed at constant amplitude loading at a constant load ratio on the newly designed single edge notch bend specimen. Using the FADD2D boundary element code, two-dimensional stress analysis was performed on the new specimen to determine the stress intensity factor as a function of crack size for surface and through cracks at the edge notch. Collected fatigue crack growth rate data was used to develop a material model for the FASTRAN strip-yield crack growth code. FASTRAN was used to simulate the constant amplitude and spike overload tests, as well as the small-crack fatigue tests. The fatigue crack growth simulation results have shown that both low-cycle and high-cycle fatigue can be modeled accurately as fatigue crack growth using FASTRAN and that FASTRAN can be used to accurately predict the acceleration and retardation in fatigue crack growth rates after a spike overload. The testing has shown that the starting fatigue crack growth rate of any load-shedding test has significant influence on load history effects, with lower starting rates yielding lower crack growth thresholds and faster rates. Through inspection of fatigue surfaces, it has been shown that beveling of pin-holes in the crack growth specimens is necessary to ensure symmetric crack fronts and that the presence of debris along the fatigue surfaces can cause considerable crack growth retardation.
2

Structure-Property Relationships of an A36 Steel Alloy under Dynamic Loading Conditions

Mayatt, Adam J 15 December 2012 (has links)
Structure-property quantification of an A36 steel alloy was the focus of this study in order to calibrate and validate a plasticity-damage model. The microstructural parameters included grain size, particle size, particle number density, particle nearest neighbor distances, and percent of ferrite and pearlite. The mechanical property data focused on stress-strain behavior under different applied strain rates (0.001/s, 0.1/s, and 1000/s), different temperatures (293 K and 573 K), and different stress states (compression, tension, and torsion). Notch tension tests were also conducted to validate the plasticity-damage model. Also, failure of an A36 I-beam was examined in cyclic loads, and the crack growth rates were quantified in terms of fatigue striation data. Dynamic strain aging was observed in the stress-strain behavior giving rise to an important point that there exists a critical temperature for such behavior.

Page generated in 0.1508 seconds