• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cytoplasmic Adaptor Protein MIG-10 Interacts With Abelson Target ABI-1 During Neuronal Migration In C. Elegans

Flaherty, Erin 01 May 2014 (has links)
Cellular migration is an essential process for establishing neural connections during development. The MIG-10/RIAM/Lamellipodin signaling proteins are thought to send positional information from guidance cues to actin polymerization machinery, promoting the polarized outgrowth of axons. In C. elegans, mutations in the gene mig-10 result in the truncation of the migration of the mechanosensory neurons. Biochemical analysis demonstrates that MIG-10 interacts with abelson-interactor protein 1 (ABI-1), and therefore investigation into whether these proteins work together in the neuron to promote migration was completed. To demonstrate MIG-10 cell autonomy in the neuron, transgenic strains with specific expression of mig-10 were created. mig-10 mutants were rescued in the mechanosensory, anterior lateral microtubule neuron (ALM) by neuron specific expression of mig-10 but not by epithelial expression, suggesting that MIG-10 is acting cell autonomously. To determine ABI-1 cell autonomy, transgenic strains with specific neuronal expression of abi-1 were compared to the wild type strain. abi-1 mutants were rescued by neuron specific expression of abi-1 in the ALM, suggesting that ABI-1 also functions cell autonomously in the ALM during this migration. Further investigation into the MIG-10/ABI-1 relationship was done by feeding RNAi of abi-1 in a mig-10(ct41) mutant strain. The ALM migration was not more severely truncated in the double mutant, suggesting that MIG-10 and ABI-1 work in the same pathway. Taken together, this evidence supports a model where MIG-10 and ABI-1 work together autonomously within the ALM to promote migration.

Page generated in 0.014 seconds