1 |
Power System Planning and Harmonic Mitigation of Mass Rapid Transit SystemsChuang, Hui-Jen 27 June 2002 (has links)
This dissertation is to investigate the power system service quality of a Mass Rapid Transit (MRT) system and derive the proper transformer planning to enhance the system operation efficiency. The transformer loading factor is improved by proper capacity planning by considering the power demand according to the growth of ridership. To mitigate the harmonic distortion, the installation location and capacity of harmonic filters are designed and verified by computer simulation.
In this dissertation, the software programs for the AC/DC load flow study and harmonic analysis have been developed and integrated to simulate the MRT power system. To enhance the accuracy of computer simulation for the system operation with multiple trains on the main lines, the effect of voltage fluctuation to the traction effort of a train set is considered in the AC/DC load flow analysis. The mathematical model of 12-pulse uncontrolled rectifiers without interphase transformers has been derived and implemented in the programs to obtain more accurate simulation results.
To achieve better cost effective capacity planning of main transformers, the unit commitment is applied to derive the optimal transformer capacity to meet the annual peak demand and provide reserve for service reliability. The power consumption of an MRT system is varied with the train operation modes and the route gradient, curvature of MRT networks. The motion equation of train sets has been applied to find the dynamic power consumption and travel distance for each time snapshot. The AC/DC load flow analysis is performed to find the annual power loading of traction substations and whole Taipei MRT network. The energy loss, investment cost of main transformers, and the system service reliability are used to define the equivalent cost of all feasible states for each dynamic programming stage. According to the computer simulation, significant cost saving has been obtained by the proposed methodology for transformer capacity planning of Taipei MRT network.
Due to the dynamic load behavior of train sets, the stochastic harmonic distortion of an MRT system is simulated. The mathematical model of the 12-pulse uncontrolled rectifiers without interphase transformers is considered in the harmonic load flow analysis to solve the power demand and harmonic injection currents at traction substations for each time snapshot. According to the mean values and standard deviation of injection harmonic currents, the stochastic harmonic load flow analysis is executed to find the average value and the confidential interval of harmonic voltage distortion for all system buses. By this method, the system voltage harmonic distortion can be evaluated more accurately to provide better guidance for the strategy of harmonic mitigation. According to the results of the stochastic harmonic load flow, different strategies of harmonic distortion mitigation are investigated. Both the fixed type and switching type of passive filters are considered to be implemented. The cost function of filter investment and the harmonic distortion are used in the objective function by considering the regulation of harmonic distortion and system voltages as the constraints. By performing the nonlinear programming, the proper capacity of harmonic filters for each harmonic order and the corresponding switching time of unit commitment is determined. To further improve the power quality, the hybrid filter is also proposed for better distortion mitigation. The analysis of distortion mitigation by harmonic filters are performed to demonstrate the effectiveness of the hybrid filters to improve the power quality of MRT systems.
|
2 |
Rigid Modeling of MRT Propulsion And Load Flow AnalysisLiao, Jung-Ting 12 June 2001 (has links)
The main goal of this thesis is to improve the efficiency of power consumption for single train and propose the effects of the voltage variation to AC/DC power flow. This thesis establishes a simplified mathematic model for motor drivers with the magnetic vector control laws. Furthermore, it designs the framework of the motor drives model with the power system blockset of the MATLAB/SIMULINK. The mass rapid transit(MRT) power system framework are also introduced in the thesis. Besides the power and propelment system model are developed. Due to the differences of the load pattern for the MRT system and the other customers, the analysis can be separated into static station load and dynamic load during the train operations. Static station load is constant and easy to measure. But dynamic load leads to some extent of variation depended on the MRT network characteristics and the headway of trains. The power consumption for dynamic load is about 60-70% of the whole MRT power consumption. The whole process of starting, acceleration, coasting and stopping are realistically concerned for the simulation of MRT operation. In this thesis, the DC system is composed of a 12 pulse rectifying transformer, a conductor rail, motor-driven induction drive control, VVVF inverter, and a 3-phase motor-driven induction electric power model. The performance for single train can be obtained very efficiently with the rate curves.
To perform the MRT power system simulation, an AC/DC load flow analysis has been developed with Matlab. The power system model of an simulation for Taipei MRT system has been created, the AC/DC load flow analysis is executed to analyze the effects of traction substation, voltage fluctuation, and various load under the dynamic operation for multiple trains. The efficiency of proposed methodology to solve the optimal MRT operation is verified by comparing to the results of Train Performance Simulator (TPS), which has been used by Taipei MRT project. It is suggested that the proposed rigid modeling of propulsion driving system can enhance the accuracy of system simulation and provide the tool to achieve better planing of MRT operation.
|
3 |
HIGH VOLTAGE AC-DC LOAD FLOW IN ELECTRICAL POWER NETWORKSMuhammed, Elssodani Abdelhadi 08 May 2014 (has links)
Power losses in the grid are important, and as the power losses decrease the efficiency increases. Not much research has been done recently on the Newton-Raphson Power Flow (NRPF) method in polar form for systems with High Voltage Direct Current (HVDC) subsystems. The point of departure for this thesis is based on decoupling the NR Power Flow method Power flow problems are solved for many fundamental problems in the operation and planning of the power system. Although many methods are available to solve these problems, this thesis focuses on developing an enhanced HVDC power flow method with improved computational efficiency and convergence stability.
A comparison of the results with full Newton-Raphson Power Flow method is presented to evaluate the performance of the proposed method. Simulations were conducted on the 14-bus and 30-bus IEEE systems. Two and three converters are shown to improve the voltage magnitude, active and reactive power profile .The overall results indicate which mode is the best mode compared to others depending on the bus importance.
|
4 |
Stochastic Harmonic Analysis and Harmonic Distortion Improvement for Mass Rapid Transit SystemsShiau, Hung-Ming 20 June 2002 (has links)
Abstract
The objective of this thesis is to perform the AC/DC load flow and harmonic analysis for the power supply system of mass rapid transit (MRT) system. According to the computer simulation of stochastic harmonic load flow analysis, the mean value and standard deviation of voltage harmonic distortion are derived. The mitigation of harmonic distortion has been proposed by the proper design of harmonic filter.
The mathematical model of 12 pulse uncontrolled rectifiers without interphase transformers is derived and applied in the AC/DC load flow analysis. The system voltage profiles and power consumption are obtained by computer simulation with the models derived. The Taipei MRT system is selected for simulation to solve the peak and off peak load of target year, bus voltage and power demand, and the harmonic current injection of traction substation. The voltage harmonic distortion is then calculated for each time snapshot according to the operation modes of all train sets on the main lines. According to the dynamic load behavior of train sets, the stochastic harmonic load flow analysis is executed to find the variation of harmonic distortion. To improve the power quality of MRT power systems, the proposed hybrid filter, which consists of both passive filter and active filter, is considered in the simulation. It is found that better distortion mitigation can be obtained with the hybrid filter by taking into account the stochastic harmonic current injection at the traction substations.
|
5 |
Design of power supply system in DC electrified transit railways - Influence of the high voltage network / Dimensionering av likspänningsbanmatningssystem – Inverkan av högspänningsnätetSeimbille, Denis January 2014 (has links)
Urban rail systems such as subways and trams transport millions of people every day, oering a high level of service. Most of these systems are fed by direct current (DC). The design of the power supply network of DC electried transit railways is of great importance and requires the use of simulation models. The power supply network is composed of a high voltage network (fed with AC) linked to a traction network (fed with DC) by traction substations. Many simulation models ignore the high voltage network in the design process whereas it has a signicant inuence on the results. A Newton-Raphson algorithm is implemented to solve the AC load ow in the high voltage network, and coupled to the existing simulation software Symphonie. Three dierent high voltage network architectures are simulated, and the simulation results are analyzed. The results show that the voltage drop at the AC side of traction substations and the load sharing between them varies signicantly from one architecture to another. In particular, when several traction substations are connected to the same high voltage loop, voltage drops can be signicant for some traction substations. In conclusion, the design of the power supply network of DC electried transit railways requires the simulation of the high voltage network when several substations are connected to the same high voltage loop. / Publika sparburna transportsystem sasom tunnelbanor och lokalbanor transporterar miljontals manniskor varje dag. De esta korta linjer matas med likstrom. Utformningen av stromforsorjningen till dessa system ar avgorande for ett val fungerande , och forutsatter anvandningen av olika matematiska modeller. Detta natverk bestar av ett vaxelstroms hogspanningsnat som omformas till likstrom i era banmatningsstationer langs banan. Dessa matematiska modeller ignorerar dock ofta hogspanningsdelen i modelleringen, varfor resultatet ibland kan bli missvisande. I detta arbete har en belastningsfordelningsalgoritm baserad pa Newton-Raphsons metod implementerats for att skapa en battre modellering av hsgspanningsdelen i den bentliga programvaran Symphonie. Tre olika hogspanningsstrukturer har bearbetats och resultatet visar att spanningsfall och belastningsf ordelning varierar mellan de olika strukturerna. Speciellt nar era transformatorstationer ar kopplade till samma hogspanningssystem, kan spanningsfall vara patagligt for vissa transformatorstationer. Sammanfattningsvis maste utformningen av hogspanningsystemet till likstromsforsorjda jarnvagar utformas med hjalp av anpassade matematiska modeller som tar hansyn till placering av transformatorstationer liksom hogspanningsnatets kapacitet.
|
Page generated in 0.0566 seconds