• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of zirconium-iron-rhenium alloys as surrogates for a technetium alloy waste form

Mews, Paul Aaron 15 May 2009 (has links)
Stainless steel – zirconium alloys were developed by the US Department of Energy Laboratories as metallic waste forms for noble metal fission products. This thesis evaluates iron–zirconium–rhenium alloys to establish a technical basis for using metal waste form alloys for technetium-99 immobilization. Rhenium is used as a surrogate for Tc-99 since Tc is not naturally available and Re is metallurgically similar to Tc. The iron-zirconium system has two eutectic compositions, Fe-15 wt % Zr and Zr- 16 wt% Fe. Ten test samples were successfully cast in yttrium oxide crucibles at 1600°C, half near each eutectic composition, with Re amounts varying from 2.5 to 12.5 weight percent. A scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDS) capability was employed to determine the phase structure and phase composition of each sample. Iron rich samples were found to form up to three phases, with the rhenium content favoring the intermetallic phases: 1) an Fe solid solution phase, 2) an FeZr2-type intermetallic with 11 wt % or less Re, and 3) a second intermetallic with about 18 wt % Re. Zirconium rich samples formed as many as five distinct phases: 1) a Zr solid solution phase, 2) a Zr3Fe-type intermetallic with as much as 13 wt% Re, 3) a rhenium-zirconium intermetallic, 4) another Fe-Zr intermetallic with very little Re, and 5) a Fe-Re intermetallic. Potentiostatic and potentiodynamic electrochemical tests were performed using sulfuric acid to evaluate the corrosion resistance of each sample. These tests found that the zirconium rich samples were very corrosion resistant but became increasingly susceptible at higher rhenium concentrations. The iron rich samples were not very resistant to corrosion under the test conditions; there was no notable trend in corrosion behavior related to the introduction of rhenium.
2

Evaluation of zirconium-iron-rhenium alloys as surrogates for a technetium alloy waste form

Mews, Paul Aaron 10 October 2008 (has links)
Stainless steel - zirconium alloys were developed by the US Department of Energy Laboratories as metallic waste forms for noble metal fission products. This thesis evaluates iron-zirconium-rhenium alloys to establish a technical basis for using metal waste form alloys for technetium-99 immobilization. Rhenium is used as a surrogate for Tc-99 since Tc is not naturally available and Re is metallurgically similar to Tc. The iron-zirconium system has two eutectic compositions, Fe-15 wt % Zr and Zr- 16 wt% Fe. Ten test samples were successfully cast in yttrium oxide crucibles at 1600°C, half near each eutectic composition, with Re amounts varying from 2.5 to 12.5 weight percent. A scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDS) capability was employed to determine the phase structure and phase composition of each sample. Iron rich samples were found to form up to three phases, with the rhenium content favoring the intermetallic phases: 1) an Fe solid solution phase, 2) an FeZr2-type intermetallic with 11 wt % or less Re, and 3) a second intermetallic with about 18 wt % Re. Zirconium rich samples formed as many as five distinct phases: 1) a Zr solid solution phase, 2) a Zr3Fe-type intermetallic with as much as 13 wt% Re, 3) a rhenium-zirconium intermetallic, 4) another Fe-Zr intermetallic with very little Re, and 5) a Fe-Re intermetallic. Potentiostatic and potentiodynamic electrochemical tests were performed using sulfuric acid to evaluate the corrosion resistance of each sample. These tests found that the zirconium rich samples were very corrosion resistant but became increasingly susceptible at higher rhenium concentrations. The iron rich samples were not very resistant to corrosion under the test conditions; there was no notable trend in corrosion behavior related to the introduction of rhenium.
3

Management Tool for Assessment of Alternative Fuel Cycles

Preston, Jeffrey R 01 August 2010 (has links)
A new approach to fuel cycle uncertainty analysis and optimization is presented that combines reactor physics information, spent fuel management, and economic forecasting, which may be used to investigate effects of decisions in the design of advanced nuclear fuel cycles. The Matlab-based simulation includes isotopic mass and integral decay heat data produced by reactor physics codes in the SCALE package (SAS2, ORIGEN-ARP, and ORIGEN-S). Reactor physics data for Light Water Reactor (LWR), and metal- and oxide-fueled Liquid Metal-cooled Fast Burner Reactor (LMFBR) designs are stored in databases that the code uses as needed. Detailed models of the once through and hybrid LWR-LMFBR fuel cycles have been developed for repository decay heat analysis, determination of levelized unit electric cost (LUEC), and reprocessing of spent fuel into fast reactor fuel or targets as a means of isotopic inventory minimization. The models may be run for single estimates based on best estimates of model parameters as either a Monte Carlo uncertainty analysis or as an optimization using Genetic Algorithms (GA). Results from the LUEC calculations show the once through cycle has a bus bar cost of about $19.0mills/kWh (excluding repository and interim storage costs), and the hybrid cycle has a bus bar cost of about $26.5mills/kWh. Implementation of the hybrid cycle compared to the closed once through cycle yields an effective repository mass capacity increase by a percentage of about 30% to 60% through full reprocessing of LWR spent fuel compared to original mass definitions of the Yucca Mountain repository. The GA optimization routine allows the user to define any one of the variables present in the output structure as the fitness parameter; thus, optimization of any calculated value is possible, including economic cost, isotopic inventory, or required repository capacity. Optimization of the once through cycle with respect to LUEC gives a result of $19.2 mills/kWh when burn up approaches the upper limit of 60 GWd/t and delay time spent fuel cools after discharge approaches 200 years (including repository and interim storage costs).
4

Arc Fault Circuit Interrupter Development for Residential DC Electricity

Aarstad, Cassidy Alan 01 June 2016 (has links)
The following technical report describes the development and testing of an arc fault circuit interrupter (AFCI) for DC circuits operating primarily at 48 volts. We have identified an effective method for determining when arcing is occurring. Our method is primarily based on comparing the frequency spectrum of current flowing through the circuit during an arcing event to a known characteristic spectrum. Once an arc has been identified, our interrupter is capable of responding adequately to eliminate the arc. Hardware tests show the AFCI developed in this thesis responded, in all test cases, within 2 seconds of an arc fault occurrence. Commercialization and adoption of our interrupter will increase the safety of DC circuits operating at 80 volts or less.
5

ARC FLASH DETECTION THROUGH VOLTAGE/CURRENT SIGNATURES

2012 August 1900 (has links)
Arc Flash events occur due to faults in electrical equipment combined with a significant release of energy across an electrical arc. Due to the large energy release, plasma is generated, pressures increase, and the plasma expands. Under these conditions the plasma becomes excited enough to liquefy metal causing physical damage to equipment and any humans in the vicinity. This thesis investigates the state of art for detection of arc flash events and investigates a method of improving detection reliability, and speed by monitoring the high frequency voltage / current patterns utilizing methods similar to arc flash circuit interrupters (AFCI). A second alternative detection approach is determined through analysis of the physics of plasma development. The current state of art is based upon light detection. However this thesis experimentally investigates what happens before the arc event emits visible light. The results show that current flows to ground during an arc event slightly prior to the production of light. Further it shows through analysis of the physics of plasma that a high speed plasma detector has the potential to identify an arc event before the presence of visible light. Through the design and construction of experimental test setups, and physics analysis, this thesis provides new paths for detecting arc events that present opportunities to improve detection time.

Page generated in 0.0652 seconds