• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Probing System with Replaceable Tips for Three Dimensional Nano-Metrology

Mrinalini, R Sri Muthu January 2017 (has links) (PDF)
With increase in the number of three dimensional (3-D) nanometer-scale objects that are being either fabricated or studied, there is a need to accurately characterize their geometry. While the Atomic force microscope (AFM) is a versatile tool for performing nano-metrology, it suffers from issues of poor accessibility of 3-D features and inability to measure 3-D forces that limit its applicability in 3-D nano-metrology. This thesis investigates the design and development of a novel probing system based on AFM that improves accessibility and enables direct measurement of 3-D forces acting on the AFM tip. Two approaches are investigated to address the issue of poor accessibility. The first is to develop a novel system that enables in-situ replacement and reuse of specialized AFM tips that improve accessibility, and the second is to design a special AFM tip that can actively re-orient about two independent axes. In order to perform in-situ tip replacement, a liquid meniscus based micro-gripper is developed and integrated on to a conventional AFM probe. The stiffness of the gripper is analyzed and shown to be adequately high along all three axes for AFM imaging to be performed. Tip replacement and re-use are both experimentally demonstrated by employing a novel tip-exchange station. The replaced tips are employed to show artifact-free AFM imaging of a standard calibration grating in both tapping-mode and contact-mode. To actively re-orient a conventional tip, a novel magnetically-actuated micro-scale ball-and-socket joint is integrated onto an AFM probe. The quasi-static behavior of the joint is experimentally characterized, and the ability of the tip to independently re-orient about two axes is demonstrated. The achieved range is about +/- 90 degrees about both X- and Y-axes. In order to realize the potential of the proposed probes for 3-D nano-metrology, an AFM is developed in-house that possesses the capability to make direct measurement of 3-D forces. Optimization of the measurement system to achieve identical sensitivities and resolution along all three axes is studied. Subsequently, the necessary electronics for measurement, actuation and control are developed. All the subsystems are experimentally calibrated and integrated. The overall AFM is shown to have a resolution of about 0.2 nm when operated in tapping-mode. The developed AFM is employed to showcase the following applications: characterization of the coefficient of kinetic friction of Muscovite mica, force controlled nano-scribing on polymethyl methacrylate (PMMA) and tapping-mode imaging of a calibration grating with the developed re-orientable AFM probe. Finally, the unique ability of the re-orientable AFM probe to control its tip-orientation is employed to develop a nanometer-scale coordinate measurement machine (CMM). The developed nano-CMM is shown to access the vertical wall of a sample and obtain its topography.
2

Développement et commande d’une plateforme microrobotique pour la synchronisation d’un faisceau de lumière / Development and control of a micro-robotics platform for the synchronization of a light beam

Amari, Nabil 08 July 2016 (has links)
Nous présentons dans cette thèse les différentes étapes de conception d'une plateforme microrobotique dédiée au positionnement sous faisceau de lumière d'objets de dimensions micrométriques. Cette plateforme a pour vocation de mettre en oeuvre des méthodologies d'asservissement et de suivi de position de micro-objets placés au coeur même d'un faisceau de lumière. L'objectif final étant de caractériser des micro/nano-matériaux par diffraction et diffusion des rayons X. Les différentes contraintes technologiques rencontrées par les systèmes de micro-nanomanipulation actuels en environnement synchrotron nous ont amené à concevoir une plateforme microrobotique de manipulation duale utilisant des sondes de microscope à force atomique (AFM). Diverses méthodologies de préhension avec une ou deux sondes AFM avec capteur de force intégré - ont été proposées en vue d'évaluer chacune d'entre-elles dans un contexte de positionnement tridimensionnel. Une stratégie de commande des micromanipulateurs à double étage est mise en oeuvre pour assurer l'asservissement de position des sondes AFM lors des tâches d’approche et de transport du micro-échantillon sous test. Afin d’augmenter la robustesse de positionnement vis-à-vis des erreurs de modélisation, des perturbations extérieures et des bruits de mesure, nous avons proposé une commande robuste de type H∞, avec optimisation des paramètres de pondération à partir d’algorithmes génétiques. De plus, les erreurs aléatoires d’alignement du faisceau de lumière avec l’objet sont corrigées en temps-réel par l’utilisation d’estimateurs de position (filtres de Kalman et particulaire). Finalement, des tâches microrobotiques automatisées de micro-préhension, de transport et de positionnement de microobjets sphériques de 8 μm de diamètre placés sous faisceau de lumière laser ont été réalisées avec succès. Le « benchmark » proposé est en cours de transfert au sein du European Synchrotron Radiation Facility (ESRF) à Grenoble pour validation sous faisceau de rayons X. / We present in this thesis the various stages in the design of a microrobotics platform dedicated to the manipulation of micro/nano objects in a synchrotron environment. It is composed of dual micro/nano manipulators in order to handle and to maintain a micro/nano-sample through the focus of a X-ray or laser beam for material characterization and analysis. The main idea is to control and to drive in a robust way the micro/nanomanipulators by focusing the beam on the center part of the handled micro-object. A microgripper based on two Atomic Force Microscope (AFM) tips with integrated piezoresistive force sensors is proposed. First, the dual manipulators are controlled cooperatively by combining the different actuator dynamics to track a laser beam with nanometer precision. A robust control strategy based on H∞ control ensures a robust microhandling task under the focus of the laser beam whatever the external perturbations involved and parametric model uncertainties. The Genetic Algorithm (GA) approach is used to compute the parameter weighting functions in to obtain an optimal H∞ controller. Then, we propose to compensate the laser beam variations (thermal drift, mechanical variations) by estimating the position of the laser beam using stochastic estimators (Kalman and particle filters). To this aim, the maximum intensity of the laser beam is measured and tracked in real-time by a four-quadrant photodiode sensor. Finally, experimental results performed of micro-spheres (diameter: 8 μm) demonstrate the robustness of the robotic microhandling tasks using the proposed control scheme strategy.
3

HIGH SPEED ATOMIC FORCE MICROSCOPY

Jeong, Younkoo 27 August 2009 (has links)
No description available.

Page generated in 0.0467 seconds