• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DETECTING GA AIRCRAFT HAZARDOUS STATE USING A LOW-COST ATTITUDE AND HEADING REFERENCE SYSTEM

Arpan Chakraborty (5930570) 17 January 2019 (has links)
General Aviation (GA) accidents constitute the majority of aviation related accidents. In the United States, there have been over 7,000 GA accidents compared to 190 airline accidents in the last 8 years. Flight data analysis has helped reduce the accident rate in commercial aviation. Similarly, safety analysis based on flight data can help GA be safer. The FAA mandates flight data recorders for multi-engine and turbine powered aircraft, but nearly 80% of General Aviation consists of single engine, of which only a small portion contain any form of data recording device. GA aircraft flight data recorders are costly for operating pilots. Low-cost flight recorders are few and rarely used in GA safety analysis due to lack of accuracy compared to the certified on-board equipment. In this thesis, I investigate the feasibility of using a low-cost Attitude and Heading Reference System (AHRS) to detect hazardous states in GA aircraft. I considered the case of roll angles and found that the low-cost device has significant measurement errors. I developed models to correct the roll angle error as well as methods to improve the detection of hazardous roll angles. I devised a method to evaluate the time accuracy along with the angle accuracy and showed that despite the errors, the low-cost device can provide partial hazardous state detection information.

Page generated in 0.0396 seconds