1 |
Unraveling the complex genetics of atypical hemolytic uremic syndromeMaga, Tara Kristen 01 May 2012 (has links)
Atypical hemolytic uremic syndrome (aHUS) is characterized by acute renal failure, thrombocytopenia, and microangiopathic hemolytic anemia. aHUS is far less common and more severe than typical HUS, which is caused by E. coli infection and manifests as diarrheal illness. The pathogenesis of the disease is linked to dysregulation of the alternative pathway of the complement cascade. Mutations in the complement regulators factor H (CFH), membrane cofactor protein (MCP), factor B (CFB), and factor I (CFI) have been implicated in aHUS. These loss or gain of function mutations lead to uncontrolled complement activity and immune-mediated host cell damage. Establishing a genetic etiology is important as it helps to direct treatment during the acute phase of disease and when transplantation is considered. It has been shown in previous studies that the age of onset as well the severity of the disease is correlated with the type of mutation a patient is found to carry. In forty percent of aHUS patients a mutation in CFH, MCP, CFB, CFI, C3 or THBD is not detected. These data strongly suggest that other genetic factors are involved in the pathogenesis of aHUS and that comprehensive mutation detection in aHUS patients is essential to provide diagnostic and prognostic information, and improve their clinical care.
My thesis work has aimed to identify the other genetic contributors to this disease. To achieve this goal we began by screening the largest American cohort of aHUS patients for mutations in CFH, MCP, CFB, CFI, C3, THBD as well as CFHR5. This study identified over thirty novel mutations and suggests a more comprehensive genetic screening method that would better serve patients. To complement these studies multiplex ligation-dependent probe amplification was used to detect genetic rearrangements within the factor H related genes. A number of unique fusion proteins were seen in aHUS patients, all of which are predicted to affect the function of CFH. To discover mutations in novel genes that are causally related to aHUS, we have optimized a platform called CASCADE (Capture and Sequencing of Complement-Associated Disease Exons), which is based on targeted-genome capture and next-generation sequencing. This study revealed an unexpected role for ADAMTS13 and other genes in the coagulation pathway as modifiers of aHUS. Using functional assays we show two of the ADAMTS13 variants alter the behavior of this protein. This work has changed how we view this disease by identifying several novel candidate genes, for which we hope future analysis will lead to a better understanding of their role in aHUS. Using this knowledge we can provide better and more personalized treatments for patients.
|
2 |
Role of Complement Regulatory Protein Properdin in Hemolytic Anemias Caused by Complement DysregulationChen, Jin January 2019 (has links)
No description available.
|
3 |
Rare Presentation of Atypical Hemolytic Uremic Syndrome in an AdultAlhabhbeh, Ammar A., Fatima, Zainab, Thomas, Akesh, Cook, Christopher 01 September 2021 (has links)
Thrombotic microangiopathies (TMA) are disorders characterized by microangiopathic hemolytic anemia, thrombocytopenia, and microthrombi leading to organ dysfunction. Atypical hemolytic uremic syndrome (aHUS) is a rare subtype of TMA mediated by complement dysregulation. We present a case of a 59-year-old female who presented with acute kidney injury and mild thrombocytopenia but with normal hemoglobin. We highlight the importance of prompt diagnosis of aHUS and initiating appropriate treatment with eculizumab.
|
4 |
Characterization of the complement hereditary and acquired abnormalities in atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy / Caractérisation des anomalies héréditaires et acquises au cours du syndrome hémolytique et urémique atypique et de la glomérulopathie à dépôts de C3Marinozzi, Maria Chiara 27 June 2016 (has links)
Résumé confidentiel / Confidential abstract
|
Page generated in 0.0193 seconds