Spelling suggestions: "subject:"acceleratorer"" "subject:"ochacceleratorer""
1 |
Low-power Implementation of Neural Network Extension for RISC-V CPU / Lågeffektimplementering av neural nätverksutvidgning för RISC-V CPULo Presti Costantino, Dario January 2023 (has links)
Deep Learning and Neural Networks have been studied and developed for many years as of today, but there is still a great need of research on this field, because the industry needs are rapidly changing. The new challenge in this field is called edge inference and it is the deployment of Deep Learning on small, simple and cheap devices, such as low-power microcontrollers. At the same time, also on the field of hardware design the industry is moving towards the RISC-V micro-architecture, which is open-source and is developing at such a fast rate that it will soon become the standard. A batteryless ultra low power microcontroller based on energy harvesting and RISC-V microarchitecture has been the final target device of this thesis. The challenge on which this project is based is to make a simple Neural Network work on this chip, i.e., finding out the capabilities and the limits of this chip for such an application and trying to optimize as much as possible the power and energy consumption. To do that TensorFlow Lite Micro has been chosen as the Deep Learning framework of reference, and a simple existing application was studied and tested first on the SparkFun Edge board and then successfully ported to the RISC-V ONiO.zero core, with its restrictive features. The optimizations have been done only on the convolutional layer of the neural network, both by Software, implementing the Im2col algorithm, and by Hardware, designing and implementing a new RISC-V instruction and the corresponding Hardware unit that performs four 8-bit parallel multiply-and-accumulate operations. This new design drastically reduces both the inference time (3.7 times reduction) and the number of instructions executed (4.8 times reduction), meaning lower overall power consumption. This kind of application on this type of chip can open the doors to a whole new market, giving the possibility to have thousands small, cheap and self-sufficient chips deploying Deep Learning applications to solve simple everyday life problems, even without network connection and without any privacy issue. / Deep Learning och neurala nätverk har studerats och utvecklats i många år fram till idag, men det finns fortfarande ett stort behov av forskning på detta område, eftersom industrins behov förändras snabbt. Den nya utmaningen inom detta område kallas edge inferens och det är implementeringen av Deep Learning på små, enkla och billiga enheter, såsom lågeffektmikrokontroller. Samtidigt, även på området hårdvarudesign, går industrin mot RISC-V-mikroarkitekturen, som är öppen källkod och utvecklas i så snabb takt att den snart kommer att bli standarden. En batterilös mikrokontroller med ultralåg effekt baserad på energiinsamling och RISC-V-mikroarkitektur har varit den slutliga målenheten för denna avhandling. Utmaningen som detta projekt är baserat på är att få ett enkelt neuralt nätverk att fungera på detta chip, det vill säga att ta reda på funktionerna och gränserna för detta chip för en sådan applikation och försöka optimera så mycket som möjligt ström- och energiförbrukningen. För att göra det har TensorFlow Lite Micro valts som referensram för Deep Learning, och en enkel befintlig applikation studerades och testades först på SparkFun Edge-kortet och portades sedan framgångsrikt till RISC-V ONiO.zero-kärnan, med dess restriktiva funktioner. Optimeringarna har endast gjorts på det konvolutionerande skikt av det neurala nätverket, både av mjukvara, implementering av Im2col-algoritmen, och av hårdvara, design och implementering av en ny RISC-V-instruktion och motsvarande hårdvaruenhet som utför fyra 8-bitars parallella multiplikation -och-ackumulationsoperationer. Denna nya design minskar drastiskt både slutledningstiden (3,7 gånger kortare) och antalet utförda instruktioner (4.8 gånger färre), vilket innebär lägre total strömförbrukning. Den här typen av applikationer på den här typen av chip kan öppna dörrarna till en helt ny marknad, vilket ger möjlighet att ha tusentals små, billiga och självförsörjande chip som distribuerar Deep Learning-applikationer för att lösa enkla vardagsproblem, även utan nätverksanslutning och utan någon integritetsproblematik.
|
Page generated in 0.0478 seconds