Spelling suggestions: "subject:"AIDA-I E. cold""
1 |
Pathogenesis and clinical significance of AIDA-I-positive <i>E. coli</i> in diarrhea of pigsRavi, Madhu Babu 03 July 2006
<i>Escherichia coli </i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of E. coli carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarr<i>Escherichia coli</i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of <i>E. coli</i> carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarrhea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in <i>E. coli</i> isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic <i>E. coli</i> isolates and that from a human <i>E. coli</i> isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I <i>E. coli</i> virotype are unknown in humans or in animals. <p>First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) <i>E. coli</i>; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic <i>E. coli</i> strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.<p>Second, 110 F4 negative <i>E. coli</i> isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ <i>E. coli</i> isolates. <p>The clinical significance of the AIDA-I+ <i>E. coli</i> was studied using clinical data available for 35 of the 110 <i>E. coli</i> isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ <i>E. coli</i> and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic <i>E. coli</i> strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ <i>E. coli</i>. <p>In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs. .hea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in E. coli isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic E. coli isolates and that from a human E. coli isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I E. coli virotype are unknown in humans or in animals.
First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) E. coli; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic E. coli strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.
Second, 110 F4 negative E. coli isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ E. coli isolates.
The clinical significance of the AIDA-I+ E. coli was studied using clinical data available for 35 of the 110 E. coli isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ E. coli and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic E. coli strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ E. coli.
In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs.
|
2 |
Pathogenesis and clinical significance of AIDA-I-positive <i>E. coli</i> in diarrhea of pigsRavi, Madhu Babu 03 July 2006 (has links)
<i>Escherichia coli </i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of E. coli carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarr<i>Escherichia coli</i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of <i>E. coli</i> carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarrhea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in <i>E. coli</i> isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic <i>E. coli</i> isolates and that from a human <i>E. coli</i> isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I <i>E. coli</i> virotype are unknown in humans or in animals. <p>First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) <i>E. coli</i>; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic <i>E. coli</i> strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.<p>Second, 110 F4 negative <i>E. coli</i> isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ <i>E. coli</i> isolates. <p>The clinical significance of the AIDA-I+ <i>E. coli</i> was studied using clinical data available for 35 of the 110 <i>E. coli</i> isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ <i>E. coli</i> and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic <i>E. coli</i> strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ <i>E. coli</i>. <p>In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs. .hea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in E. coli isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic E. coli isolates and that from a human E. coli isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I E. coli virotype are unknown in humans or in animals.
First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) E. coli; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic E. coli strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.
Second, 110 F4 negative E. coli isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ E. coli isolates.
The clinical significance of the AIDA-I+ E. coli was studied using clinical data available for 35 of the 110 E. coli isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ E. coli and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic E. coli strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ E. coli.
In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs.
|
3 |
Characterization of porcine AIDA-I adhesin and its receptorsFang, Yuanmu 25 April 2007
A relatively high percentage of porcine <i>Escherichia coli</i> isolates from cases associated with neonatal and post-weaning diarrhea are positive for the gene encoding the adhesin involved in diffuse adherence I (AIDA-I). This gene and its corresponding protein were first identified and characterized in <i>E. coli</i> strain 2787 isolated from human infantile diarrhea. Little is known about the role of the AIDA-I protein in pathogenesis of porcine enteric disease caused by AIDA-I positive E. coli and the properties of AIDA-I protein expressed by porcine AIDA-I positive <i>E. coli</i> isolates and its receptors. <p>In this study, we demonstrated that AIDA-I adhesin isolated from porcine AIDA-I positive <i>E. coli</i> PD20 and PD58 is an acidic protein consisting of five isoforms. It has a molecular weight (100 kDa) similar to the AIDA-I adhesin expressed by human AIDA-I positive <i>E. coli</i> strain 2787 and has a relatively high amino acid homology (78-87%) with it. Immunodetection of AIDA-I positive <i>E. coli</i> strains using polyclonal anti-AIDA-I antibodies had relatively low sensitivity and specificity, accordingly these tests are unlikely to be used for regular diagnostic detection. <p>Using affinity chromatography, we isolated from porcine intestinal mucus proteins that bind to purified AIDA-I adhesin. These proteins were separated by one- and two-dimensional electrophoresis and subjected to overlay Western blot with purified AIDA-I adhesin and AIDA-I positive <i>E. coli</i> to demonstrate 65 and 120 kDa (p65 and p120) proteins as AIDA-I binding proteins. The identity of p65 was not determined based on LCMS/MS data, whereas p120 was matched to two nuclear proteins (namely, DNA damage binding protein and splicing factor 3b) and one cytoplasmic protein, which is an IgG Fc binding protein. Based on similar amino acid homology, molecular weight, structural similarity to mucin and reported evidence of being secreted by goblet cells into the intestinal lumen, we think that the IgG Fc binding protein is the most likely candidate to serve as a potential receptor in intestinal mucus for AIDA-I adhesin.
|
4 |
Characterization of porcine AIDA-I adhesin and its receptorsFang, Yuanmu 25 April 2007 (has links)
A relatively high percentage of porcine <i>Escherichia coli</i> isolates from cases associated with neonatal and post-weaning diarrhea are positive for the gene encoding the adhesin involved in diffuse adherence I (AIDA-I). This gene and its corresponding protein were first identified and characterized in <i>E. coli</i> strain 2787 isolated from human infantile diarrhea. Little is known about the role of the AIDA-I protein in pathogenesis of porcine enteric disease caused by AIDA-I positive E. coli and the properties of AIDA-I protein expressed by porcine AIDA-I positive <i>E. coli</i> isolates and its receptors. <p>In this study, we demonstrated that AIDA-I adhesin isolated from porcine AIDA-I positive <i>E. coli</i> PD20 and PD58 is an acidic protein consisting of five isoforms. It has a molecular weight (100 kDa) similar to the AIDA-I adhesin expressed by human AIDA-I positive <i>E. coli</i> strain 2787 and has a relatively high amino acid homology (78-87%) with it. Immunodetection of AIDA-I positive <i>E. coli</i> strains using polyclonal anti-AIDA-I antibodies had relatively low sensitivity and specificity, accordingly these tests are unlikely to be used for regular diagnostic detection. <p>Using affinity chromatography, we isolated from porcine intestinal mucus proteins that bind to purified AIDA-I adhesin. These proteins were separated by one- and two-dimensional electrophoresis and subjected to overlay Western blot with purified AIDA-I adhesin and AIDA-I positive <i>E. coli</i> to demonstrate 65 and 120 kDa (p65 and p120) proteins as AIDA-I binding proteins. The identity of p65 was not determined based on LCMS/MS data, whereas p120 was matched to two nuclear proteins (namely, DNA damage binding protein and splicing factor 3b) and one cytoplasmic protein, which is an IgG Fc binding protein. Based on similar amino acid homology, molecular weight, structural similarity to mucin and reported evidence of being secreted by goblet cells into the intestinal lumen, we think that the IgG Fc binding protein is the most likely candidate to serve as a potential receptor in intestinal mucus for AIDA-I adhesin.
|
Page generated in 0.0611 seconds