• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors

Hu, J., Khodadadi-Jamayran, A., Mao, M., Shah, K., Yang, Z., Nasim, Md. Talat, Wang, Z., Jiang, H. 08 November 2016 (has links)
Yes / Alternative splicing of pre-mRNAs significantly contributes to the complexity of gene expression in higher organisms, but the regulation of the splice site selection remains incompletely understood. We have previously demonstrated that a chromatin-associated protein, AKAP95 (AKAP8), has a remarkable activity in enhancing chromatin transcription. In this study, we have shown that AKAP95 physically interacts with many factors involved in transcription and RNA processing, and functionally regulates pre-mRNA splicing. AKAP95 directly promotes splicing in vitro and the inclusion of a specific exon of an endogenous gene FAM126A. The N-terminal YG-rich domain of AKAP95 is important for its binding to RNA processing factors including selective groups of hnRNP proteins, and its zinc finger domains are critical for pre-mRNA binding. Genome-wide binding assays revealed that AKAP95 bound preferentially to proximal intronic regions on a large number of pre-mRNAs in human transcriptome, and AKAP95 depletion predominantly resulted in reduced inclusion of many exons. AKAP95 also selectively coordinates with hnRNP H/F and U proteins in regulating alternative splicing events. We have further shown that AKAP95 directly interacts with itself. Taken together, our results establish AKAP95 as a novel and mostly positive regulator of premRNA splicing and a possible integrator of transcription and splicing regulation, and support a model that AKAP95 facilitates the splice site communication by looping out introns through both RNA-binding and protein-protein interaction. / This work was supported by a UAB start-up fund to H.J.

Page generated in 0.0179 seconds