361 |
Effect of heat treatment on metallic glassesBhatti, A. R. January 1989 (has links)
No description available.
|
362 |
An experimental and theoretical study of the peritectic reactionHa, Heon Phil January 1998 (has links)
No description available.
|
363 |
The mechanical properties of #gamma#-TiAl based single crystalsBird, Nigel January 1998 (has links)
No description available.
|
364 |
Properties and microstructure of Al-Li alloysXia, Xiaoxin January 1989 (has links)
No description available.
|
365 |
Melt spun Al alloyWillis, T. C. January 1985 (has links)
No description available.
|
366 |
Magnetic structures of Gd-Y alloysBates, S. January 1985 (has links)
No description available.
|
367 |
Factors affecting the exfoliation corrosion of aluminium alloysJackson, Neal C. January 1996 (has links)
Aluminium alloys suffer from localised attack termed exfoliation corrosion which is intergranular in nature where the attack proceeds around the elongated grains present in the microstructure. The formation of a more voluminous corrosion product than the original material results in the lifting of grains giving the characteristic of exfoliation corrosion - lamellar attack. This results in surface degredation in the form of pitting, flaking or blistering. The precipitates present within the microstructure and the grain shape can alter how susceptible the material is to exfoliation corrosion. The distribution of precipitates present can be altered by heat treatment which affects the exfoliation corrosion susceptibility. A study on the effects of heat treatment and grain shape on exfoliation corrosion has been completed for two AlCuMg alloys (2014 and 2024) and two aluminium - lithium alloys (8090 and 2091). A MASTMAASIS salt - spray cabinet was used to determine the exfoliation corrosion susceptibility of all the alloys. A four - point bend test was developed to determine the depth of penetration and compared to depths measured metallographically. The results for the 2XXX series alloys suggest that as the grain aspect ratio increases the exfoliation susceptibility increases. Although the aspect ratio did not differ greatly between each alloy, the different phases present in the two alloys seem to contribute more markedly to the susceptibility. Heat treatment in the 2024 alloy suggested that the peak - aged condition gave a higher susceptibility to corrosion than the under - aged and over - aged conditions. Results indicated that the heat treatment has a greater effect on exfoliation corrosion than the grain aspect ratio, showing that the grain boundary microstructure is an important factor in the exfoliation process. The four - point bend test tended to underestimate the depth of attack by virtue of measuring the whole area of the specimen whereas metallographic measurements only took into account the attacked areas. End grain testing suggested that the attack can not only proceed longitudinally but also "short - circuit" down the transverse path of the elongated grains in the 2XXX series alloys. For the aluminium - lithium alloys the over - aged condition showed more resistance to attack than the under - aged and peak - aged conditions but the under - aged was more resistant to attack for the 2091 alloy. Stress corrosion cracking showed trends similar to exfoliation corrosion.
|
368 |
The magnetic and chemical structures of the Heusler alloysWebster, Peter John January 1968 (has links)
The Heusler alloys have been of interest since 1903 when F. Heusler reported that ferromagnetic alloys could be made from non-ferromagnetic constitutents copper-manganese bronze and group B elements such as aluminium and tin.
|
369 |
Chemical behaviour of a nuclear-grade magnesium alloy during storageMajchrowski, Tomasz P. January 2015 (has links)
Magnox, a magnesium alloy, was specifically developed in early 1950s for use as a fuel cladding in the British first generation nuclear civilian reactors. Magnesium metal demonstrates outstanding properties for use as a nuclear fuel cladding; however, it has an intrinsic ability to undergo oxidation. This introduces significant limitations during aqueous storage required prior to reprocessing of the spent fuel. A possibility exists for a failure of the dated reprocessing facilities, and therefore this may require for the spent fuel to be kept in the aqueous storage for an extended period of time. In a most extreme case, the corrosion of the fuel cladding may lead to a contamination of the storage facilities with hazardous radioactive fission species and corrosion products. A comprehensive study of chemical behaviour of the Magnox alloy may allow a deeper understanding of the reactivity of the cladding and lead to improvements in management of storage of spent Magnox fuel, thus preventing corrosion induced leakage of hazardous products. The understanding of chemistry of the Magnox alloy during storage may be improved by the development of a novel approach to study corrosion reactions. Infrared spectroscopy and Raman spectroscopy are widely used to study properties of surfaces. In addition, electron microscopy provides with information on the structure and physical appearance of materials. The results show clear evidence for reactivity of the alloy to be greatly influenced by changes induced by nature of cooling processes upon simulated discharge of spent Magnox fuel from a reactor. It is evident that the fast cooling process using water introduces the most deleterious change to the properties of the material. It is understood that presence of water provides with favourable conditions for oxidation of the metal to take place. Opposite effect is observed with slow cooling under an atmosphere of carbon dioxide gas. Further studies using X-ray diffraction suggest that crystallinity of the alloy is increased during simulated reactor exposure and phase segregation takes place during cooling. The latter appears to be dependent on the nature of the cooling process, and thus as a result different strains are applied. Through the studies it is shown that the pond conditions also contribute to control of the behaviour of the fuel cladding. A series of experiments demonstrated that sodium carbonate offers paramount corrosion protection when compared to sodium hydroxide. Systematic investigations allowed for a complete corrosion mechanism of the Magnox cladding to be drawn. It is demonstrated that the effects of present as well past conditions should be assessed and taken into consideration when establishing chemical behaviour of a material.
|
370 |
Analysis of the transition in deformation mechanisms in superplastic 5083 aluminum alloys by orientation imaging microscopyHarrell, James William 09 1900 (has links)
m alloys used in automotive, aerospace and military applications. Superplasticity requires fine grains with high-angle boundaries and resistance to failure by cavitation. OIM permits grain-specific orientation determination and quantitative assessment of the grain-to-grain disorientation distribution as well as grain size measurement in materials. The current work offers significant new insights into the development and response of superplastic microstructures; in particular, OIM data may be employed to delineate the transition from slip to grain boundary sliding in superplastic 5083 materials. / US Navy (USN) author
|
Page generated in 0.0317 seconds