• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 23
  • 23
  • 22
  • 14
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 40
  • 38
  • 33
  • 30
  • 25
  • 25
  • 24
  • 24
  • 24
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Influence of zinc on surface treatments of aluminium-zinc alloys

Gentile, Marialuisa January 2010 (has links)
This research work studies the influence of zinc on surface treatments such as mechanical polishing, anodic alkaline etching, alkaline etching and electropolishing. Solid-solution binary alloys containing 0.6, 1.0 and 1.9at.%Zn were investigated using scanning and transmission electron microscopies and ion beam analysis. Initially, the near-surface composition of the surface pretreated aluminium alloys were determined using Rutherford backscattering spectroscopy (RBS), medium energy ion scattering (MEIS) and glow discharge optical spectroscopy (GDOES). Subsequently, the surface morphologies of the pretreated specimens were characterized by secondary electron microscopy (SEM) and atomic force microscopy (AFM). Further related work was undertaken on the effect of the employed surface treatments on the anodic behaviour of aluminium-zinc alloys. A final analysis was carried out on the influence of grain orientation on zinc enrichment and surface morphologies of aluminium-zinc alloys developed during alkaline etching.The results reveal that surface pretreatments of aluminium-zinc alloys lead to zinc enrichment at the alloy/film interface. The number of zinc atoms contained in the enriched layer depends upon the employed surface pretreatment and the alloy composition. Surface pretreatments influence the topography of Al-Zn alloys. In particular, for electropolishing, alkaline etching and anodic alkaline etching, the resultant surface morphologies were associated with the oxidation-dissolution-precipitation mechanisms occurring at the alloy/film interface and at the film/solution interface. Anodizing of Al-Zn alloys shows that the anodic films growth on Al-Zn alloys in rolled condition and after surface treatment becomes detached from the substrate independently of the surface treatment employed, although detachment of the anodic film occur earlier on surface pre-treated Al-Zn alloys that developed zinc enrichment. The final studies correlated the mechanisms of oxidation and dissolution with the grain orientation. The result revealed that the (111) grain dissolves faster than other grains, while the higher number of zinc enriched atoms were measured on the (001) grain.
22

Corrosion behaviour of extruded heat exchanger aluminium alloys

Laferrere, Alice Marie January 2012 (has links)
Extruded Al-Mn alloy are used in heat exchanger applications due to their light weight and good thermal conductivity. Depending on the application, the units may be subjected to external corrosion, which can lead to perforation of the tube. The industrial test most commonly used to assess heat exchanger alloys is the seawater acetic acid test (SWAAT). This is a cyclic fog at 40°C and pH 2.9. In the present study, it was found that pits developing in extruded Al-Mn tubes during the SWAAT test are purely crystallographic. Furthermore, a mechanistic understanding for crystallographic pitting has been developed. The SWAAT test can be of relatively long duration and, typically, does not yield information on the underlying corrosion initiation and propagation mechanisms. In the present study, alternate methods to assess pitting corrosion were elaborated. A drop testing procedure has been successfully implemented to study the mechanism of pit initiation. It was revealed that pits initiated within the aluminium matrix in the vicinity of grain boundaries. A close link between large second-phase particles and pit initiation was established. No preferred grain orientation for pit initiation was evident. Scanning electron microscopy and associated tomography were undertaken for the first time to clarify the mechanism of pit propagation. The pit walls were oriented {100}, while the fast-dissolving planes were {110} and {111}. The findings were in accordance with previous literature. Corrosion penetrated deeper into the alloy when the corrosion front was close to a grain boundary. Pit walls were cathodic to the aluminium matrix, possibly due to enrichment of alloying elements at pit walls. The effect of alloy additions on the corrosion behaviour of extruded aluminium alloys was investigated. Alloys with varying copper, iron and manganese contents were compared. Shot noise analysis and post-mortem analyses were undertaken. The increased amount of manganese in solid solution delayed the transition from micropits to stable pitting. This delay is attributable to second-phase particles that are less cathodic to the aluminium matrix in alloys with increased manganese content. Increasing copper decreased the size of the dissolved polyhedra during stable pitting. Furthermore, pits propagated faster in alloys rich in copper. This could be attributed to an increased level of copper enrichment at the pit walls. Finally, more second-phase particles were present in alloys with increased iron levels. Additionally, pits located in those alloys propagated deeper than pits located in alloys with low levels of iron. A competition between two different types of cathodes, enrichment layer and second-phase particles, is suggested. In conclusion, the effect of microstructure and alloy additions on the corrosion mechanism for crystallographic pitting developed during the project was clarified.
23

Corrosion fatigue behaviour of 5083-H111 and 6061-T651 aluminium alloy welds

Mutombo, Faustin Kalenda 25 June 2012 (has links)
In addition to being one of the highest strength non-heat treatable aluminium alloys, magnesium-alloyed wrought aluminium 5083 displays excellent corrosion resistance and good weldability. Aluminium alloy 6061, alloyed with magnesium and silicon, displays high strength, excellent formability, adequate weldability and good corrosion resistance. These aluminium alloys find application in the ship building and transport industries where 5083 is often joined to 6061 to produce welded structures such as complex I-beams and semi-hollow or hollow channels. This project aimed at characterizing the hardness, tensile properties, corrosion behaviour and fatigue properties (in air and in a 3.5% NaCl solution) of aluminium 5083 and 6061 in the as-received and welded conditions. Plates of 5083-H111 and 6061-T651 aluminium, prepared with double-V or square butt joint preparations, were joined using semi-automatic or fully automatic pulsed gas metal arc welding (GMAW). The pulsed GMAW process allows close control over the welding arc and facilitates the use of lower average heat inputs, thereby improving the bead appearance and mechanical properties. During this investigation, three filler wires were evaluated, namely magnesium-alloyed ER5183 and ER5356 aluminium, and silicon-alloyed ER4043. Hardness measurements revealed a decrease in hardness in the weld metal of the 5083-H111 welds. Dressed welds failed in the weld metal during transverse tensile testing, whereas undressed (as-welded) specimens failed at the weld toe or weld root due to the stress concentration introduced by the weld geometry. Significant softening, attributed to the partial dissolution and coarsening of strengthening precipitates and recrystallization during welding, was observed in the heat-affected zones of the 6061-T651 welds. During tensile testing, failure occurred in the heat-affected zone of all 6061 welds. Welding reduced the room temperature fatigue life of all specimens tested. In the 5083 welds, fatigue cracks initiated preferentially at gas pores, lack-of-fusion type defects and second phase particles in dressed welds, and at the stress concentration presented by the weld toes or the weld root in undressed welds. In 6061 welds, failure occurred preferentially in the softened heat-affected zone of the welds. As a result of improved control over the weld profile and a lower incidence of weld defects, fully automatic welds consistently outperformed semi-automatic welds during fatigue testing. The presence of a corrosive environment (a 3.5% NaCl solution in this investigation) during fatigue testing reduced the fatigue properties of all the samples tested. Corrosion pits formed preferentially at second phase particles or weld defects, and reduced the overall fatigue life by accelerating fatigue crack initiation. Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
24

Semisolid Die Casting of Wrought A6061 Aluminium Alloy

Kini, Anoop Raghunath January 2013 (has links) (PDF)
The mechanical properties achieved with high performance wrought aluminium alloys are superior to cast aluminum alloys. To obtain an intricate shaped component, wrought alloys are commonly subjected to forging followed by subsequent machining operation in the automobile industry. As machining of such high strength wrought aluminium alloys adds to cost, productivity gets affected. Shortening the process by near net shaped casting would tremendously enhance productivity. However, casting of such alloys frequently encounter hot tear defect. Therefore, circumventing hot tear to successfully die cast near net shaped wrought alloy components is industrially relevant. A recent advanced casting process, namely ‘Semisolid Die casting’, is proposed as a likely solution. Hot tearing originates due to lack of liquid flow in the inter-dendritic region. To reduce hot tear susceptibility, fine and non-dendritic grain structure is targeted, amenable for processing by semisolid route. For semisolid processing an adequate freezing range for processing is required. Accordingly A6061 wrought alloy whose composition is tuned with higher silicon and magnesium content within the grade limits, is chosen for the study. With the objective of obtaining fine and non-dendritic microstructured billets, electromagnetic stirring (EMS) and cooling slope (CS) methods are employed. On conducting a parametric study with EMS, a finest possible primary α-Al grain size of about 70 μm is obtained at low stirring time at stirring current levels of 175 A and 350 A, with the addition of grain refiner. CS, on the other hand, rendered a grain of 60 μm at a slope length of 300 mm at a slope angle of 45° with grain refiner addition. Of the two methods, CS billets are chosen for subsequent induction heating. A 3-step induction heating cycle has been devised to attain a temperature of 641°C in the billet on the basis of factors including coherency point, viscosity of the slurry and solid fraction sensitivity with temperature. The billet microstructure is found to be homogenous throughout after quenching in water. The characterization of phase along primary α-Al grain boundary and its composition analysis is done by SEM and EPMA respectively, after billet casting as well as induction heating. In addition, the bulk hardness is determined in BHN. The induction heated billets are semisolid die cast to produce an engine connecting rod used in automobiles. The microstructure is characterized at various locations, and is found to consist of smooth α-Al grains in a background matrix of fine grains formed due to secondary solidification. The component hardness is found to be 66 BHN comparable with A6061 alloy under T4 heat treated condition. X-ray radiography does not confirm presence of surface hot tear, which is the normal defect associated with casting of wrought aluminium alloys. No defects are observed along the constant cross-sectional area of the connecting rod, suggesting that the processing could be suitable for semisolid extrusion.
25

A Study Of Crystallographic Texture, Residual Stresses And Mechanical Property Anisotropy In Aluminium Alloys For Space Applications

Narayanan, P Ramesh 07 1900 (has links) (PDF)
Aluminium alloys, which are the most widely used materials in the aircraft and aerospace industries, find their applications due to high strength–to-density ratio, resistance to catastrophic fracture, high degree of toughness, fabricability including good weldability and availability. High strength aluminum alloys are used in different forms like sheets, forgings and extruded rods, welded and machined components in the aerospace industry. One major application of the aluminium alloys in the space sector is in the launch vehicle and satellite sub-systems. The Indian Space Research Organization has met major challenges of indigenization of suitable aluminium alloys, for example, Al-Cu alloys (like AA2219) and Al–Zn-Mg alloys (like AA7075 and AFNOR 7020). Many failures of the metallic sub-systems made of different grades of aluminum alloys have confirmed that high levels of residual stresses and unacceptable microstructures have played a role. Crystallographic texture in these materials has a very significant role to play in the performance of these materials in service. The anisotropy in the mechanical properties caused by crystallographic texture would add to the woes of the existing problems of residual stresses and directionality in the microstructure. In this context, a detailed study of crystallographic texture and residual stresses of high strength aluminium alloys is mandatory. It is also important to study the influence of texture on the anisotropy in mechanical properties. The present research programme aims at addressing some of these aspects. The entire work has been divided in three major sections, namely macro and micro texture analysis, non-destructive measurement of residual stresses using X-ray Diffraction (XRD) and the Ultrasonic Testing (UST) and the study of anisotropy in the mechanical properties arising due to the above two factors. The thesis composition is as follows. In Chapter I, a detailed survey of the literature has been presented wherein basic physical metallurgy for different aluminum alloys of interest has been given. Thereafter, details of texture measurement by the X-ray diffraction and Electron Back Scatter Diffraction (EBSD) are presented. This is followed by a detailed review on the texture studies carried out in aluminium alloys under various conditions. Literature review on the two non-destructive methods, namely the X-ray diffraction and ultrasonic method has been carried out in detail. In order to account for microstructural changes, Differential Scanning Calorimetry (DSC) was carried out. Recent work on the mechanical property anisotropy arising due to high degree of mechanical working in aluminium alloys has been reviewed. Chapter II includes the experimental details involved in the course of the present investigation. The procedural details of cold rolling and associated microstructural changes are given in this chapter. This is followed by the texture measurement methods. Experimental details of the bulk texture measurement using the X-ray diffraction and micro texture measurements by the Electron Back Scatter Diffraction (EBSD) in the SEM are described. Details of the texture computation procedure as well as micro texture analysis methods are also presented. Basic principles of the non-destructive methods of measuring residual stresses, viz., the X-ray diffraction and the Ultrasonic testing, including the theory of measurements, are dealt with. Finally, the details of measurements of anisotropy in mechanical properties, including simulation carried out, for the three alloys are delineated. Chapter III deals with the results of the crystallographic texture measurements carried out on the cold rolled and artificially aged aluminium alloys. Results obtained from the pole figure analysis, Orientation Distribution Function (ODF) method and estimation of the various fibres present in the cold rolled material and the volume fraction of the texture components are discussed in detail for the three aluminium alloys. Results of the micro texture measurements using the EBSD are presented, explained and analyzed in detail. A comparison of the inverse pole figures (IPFs), Image Quality (IQ) maps, Misorientation angle, Grain Orientation Spread (GOS), Kernal Average Misorientation (KAM), CSL boundaries, Grain size and Grain boundary character distribution (GBCD) for materials cold rolled to different reduction for each of the alloys are done and analyzed. Conclusions are drawn regarding the evolution of texture from the above analysis. Deformation texture components Cu, Bs and S increase from the starting material as the rolling percentage increases. On the other hand, recrystallization texture components of Goss and Cube are observed to be weak. AFNOR 7020 developed the strongest texture followed by the AA7075 and AA2219 alloys. The Bs component is stronger in AFNOR 7020 alloy. This is attributed to the shear banding. Average KAM value increases as the cold working in the material increases confirming that the material contains high dislocation density at higher working percentages. Chapter IV deals with residual stresses in the aluminium alloys. Measurement of residual stresses has been carried out on the same sheets and plates, wherever it was possible, using the two methods. The residual stresses have been measured in two mutually perpendicular directions of the aluminium alloy sheets. Residual stress measurements by the ultrasonic method using the Critically Refracted Longitudinal (LCR) wave technique is also used to measure the subsurface stresses non-destructively. Acousto Elastic Coefficients (AEC) is determined for the alloys, in uniaxial tension. Using the AEC for the alloys, the RS at a depth of 3mm are evaluated using a 2MHz probe. Results of the stresses measured by the two methods have been discussed. The trends and anisotropy in the stress values due to texture are discussed and compared with the literature available. Surface residual stresses by the XRD method show compressive stresses at a majority of the locations. Residual stresses measured by the ultrasonic technique, which has a depth of penetration of about 3mm, have shown tensile stresses on many locations. Residual stresses are influenced by the crystallographic texture. Anisotropy in stress values in the longitudinal and transverse directions is demonstrated. In Chapter V, the anisotropy in mechanical properties for the three alloys is discussed in detail. The anisotropy in the three directions, namely the parallel, transverse and 45 deg orientation to the rolling directions is evaluated. The Lankford parameter, otherwise known as Plastic Anisotropy Ratio “r”, has been measured from the tensile tests of the alloy samples in the cold rolled conditions. These have been compared with the computed “r” from the XRD ODF data using the VPSC simulations and found to be qualitatively matching. These trends are discussed with the available literature on the anisotropy of the mechanical properties for aluminium alloys. Samples subjected to high cold rolling show anisotropy of UTS, YS and ‘n’ values. Experimentally measured “r” values in all the deformation conditions match the trend qualitatively with the simulated ones. The maximum anisotropy was observed at 45o orientation to the rolling direction in all the three alloys. Chapter VI gives the summary of the results from the study and the suggestions for future work.
26

On the effects of special boundary geometries on intergranular corrosion and grain boundary evolution in aluminium

Hill, Lisa January 2013 (has links)
No description available.
27

Solidification behaviour of Al-Sn-Cu immiscible alloys and Al-Si cast alloys processed under intensive shearing

Kotadia, Hirenkumar R. January 2010 (has links)
Alloy castings are usually solidified with a coarse columnar grain structure under normal casting conditions unless the mode of the solidification is carefully controlled. It is desirable for the grain structure to be fine and equiaxed to improve their mechanical performance as finished castings. It is possible to develop a fine and equiaxed grain structure either by increasing the number of nucleation sites or by grain multiplication. Immiscible alloys with a microstructure in which a soft phase is dispersed homogeneously in a hard matrix have significant potential applications in advanced bearing systems, especially for the automotive industry. Despite considerable efforts made worldwide, including extensive space experiments, no casting techniques so far can produce the desired immiscible microstructure of alloys. Experimental results on Al-Sn-Cu immiscible alloys have confirmed that intensive shearing using melt conditioning by an advanced shearing technology (MCAST) unit, is an effective way to achieve a fine and uniform dispersion of the soft phase without macro-demixing, and that such a dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm for 60 s will be adequate to produce a fine and uniform dispersion of the Sn phase, and that a higher shearing speed and prolonged shearing time can only achieve further minor refinement. A study of Al-Si hypoeutectic and hypereutectic alloys presents the effects of the processing temperature and intensive shearing on the microstructural and mechanical properties which have been investigated systematically. Attempts have been made to explain the solidification mechanism with intensive melt shearing. The sheared melt was cast into tensile test samples by high pressure die caster (HPDC) to examine the microstructures and mechanical properties. The experimental results reveal that significant grain refinement and uniformity of grains was achieved by the intensive shearing and also a considerable increase in mechanical properties with pouring temperature by changing intermetallic particles morphology, the position of defect band and reduced microscopic defects.
28

Estudo da cinética da transformação de fase no estado sólido UAl3 + Al → UAl4 / Kinetics of solid state phase transformation UAl3 + Al → UAl4

Cunha, Cecilio Alvares da 10 April 1987 (has links)
A cinética da transformação de fase UAl3 + Al → UAl4 foi estudada em duas ligas Al-U, com 31,4 % e 33,4 % U em peso respectivamente, através de metalografia quantitativa. Os resultados mostraram que esta transformação é um processo de nucleação e crescimento termicamente ativado, com a nucleação ocorrendo heterogeneamente nas interfaces UAl3/AI(∞) e o crescimento sendo controlado por difusão em volume. A energia de ativação empírica do processo foi determinada, cujo valor médio é da ordem de 54,8 kcal/mol. Foi verificado que a cinética de crescimento da fase UAl4 obedece uma lei parabólica. As interfaces UAl4/ UAl3 e UAl4/Al(∞) migram em direções opostas, sendo que a velocidade da interface UAl4/ UAl3 é aproximadamente cinco vezes maior que aquela da interface UAl4/Al(∞). O coeficiente de difusão química do Al e do U na fase UAl4 foi avaliado ser da ordem de 10-9 cm 2/s a 600°C. / The kinetics of phase transformation UAl3 + Al → UAl4 of two Al-U alloys, with 31.4 and 33.4 wt % U respectively, was studied by quantitative microscopy. The results have shown that this transformation is a nucleation and thermally activated growth process. The nucleation occurs heterogeneously at the UAl3/AI(∞) interfaces and growth is controlled by volume diffusion. The empirical activation energy of the process was determined, whose mean value is of about 54.8 kcal/mol. It was verified that a parabolic growth law is obeyed. The UAl4/ UAl3 and UAl4/Al(∞) interfaces migrates in opposite directions, with the UAl4/ UAl3 interface velocity was approximately 5 times greater than that of UAl4/Al(∞) interface. The chemical diffusion coefficient of Al and U in the UAl4 phase were evaluated to be of the order of 10-9 cm 2/s at 600°C.
29

Caracterização microestrutural dos compostos intermetálicos e seu efeito no comportamento mecânico nas ligas de Al-9%Si com adições de Fe e Mn / Microstructural characterization intermetallic compounds and its effect on the mechanical behaviour of alloys Al-9% Si with addition of Fe and Mn

Malavazi, Jefferson 04 February 2014 (has links)
O objetivo deste trabalho foi determinar a influência do ferro e do manganês em uma liga de alumínio com 9% de silício (% em peso). Para isto, foram elaboradas duas famílias de liga Al-9%Si: uma com os teores de 0,1%, 0,4%, 0,8% e 1,2% de Fe e uma segunda liga de Al-9%Si-0,8%Fe com teores de 0,1%, 0,4% e 0,7% de Mn. Para a realização deste estudo, foram produzidos corpos de prova de tração fundidos em coquilha, segundo a norma ASTM B108. Os corpos de prova obtidos foram tracionados para avaliação das propriedades mecânicas, em seguida, foram submetidos a uma análise microestrutural por microscopia óptica (MO) e eletrônica de varredura (MEV). As superfícies de fratura dos corpos de prova tracionados foram também observadas por MEV com a finalidade de comparar o efeito das adições de Fe e Mn. O efeito da adição crescente de Fe na liga Al-9%Si foi observado no ensaio de tração que mostrou queda tanto nos limites de resistência e de escoamento como no alongamento, decorrentes da formação da fase β-Al5FeSi que apresentou morfologia em plaquetas, interrompendo a continuidade da matriz de alumínio. Para teores abaixo de 0,4% de Fe, ocorreu um ligeiro aumento da resistência mecânica que pode ser atribuído à formação da fase α-Al8Fe2Si, que apresentou morfologia tipo escrita chinesa, que não interrompe a continuidade da matriz. Com adição de teores crescentes de Mn na liga Al-9%Si-0,8%Fe ocorreu uma elevação do limite de resistência e do alongamento, mas uma queda do limite de escoamento, quando comparados com a mesma liga sem adição de Mn. Conclui-se que esse comportamento pode ser atribuído a mudança de morfologia do intermetálico de plaquetas para escrita chinesa que intercala a matriz dúctil com a fase frágil, devido a adição do Mn. / This study aims to determine the influence of iron and manganese in an aluminum alloy with 9% silicon (% by weight). Were prepared two families of alloy Al-9%Si: one with the content of 0.1%, 0.4%, 0.8% and 1.2% Fe and a second alloy of Al-9% Si-0,8%Fe content of 0.1%, 0.4% and 0.7% Mn. For this study, tensile specimens were produced in permanent mold casting according to ASTM B108. The specimens obtained were pulled for quantitative evaluation of the mechanical properties and were subjected to a qualitative metallographic evaluation. Qualitative analysis of the bodies of tensile fracture test was conducted in order to compare the effect of additions of Fe and Mn. The effect of incremental addition of Fe in the alloy Al-9% Si was observed in the tensile test that showed a decrease in both the tensile and elongation flow as resulting from the formation of β-Al5FeSi phase platelet morphology showed that interrupting the continuity of aluminum matrix. To levels below 0.4% Fe, there was a slight increase in strength can be attributed to the formation of α-Al8Fe2Si phase morphology presented in chinese script that does not interrupt the continuity of the matrix. With addition of increasing concentrations of Mn in the alloy Al-9% Si-0, 8% Fe was an increase in the tensile strength and elongation but fall of yield stress when compared to the same alloy without Mn addition. We conclude that this behavior can be attributed to a change in morphology of the intermetallic platelets to chinese writing interspersing the ductile matrix with brittle phase due to the addition of Mn.
30

Cinética de amolecimento da liga de alumí­nio AA 7075 durante recozimento após laminação a frio. / Softening behavior during annealing of col-rolled aluminium alloy 7075.

Souza, Saul Hissaci de 06 February 2018 (has links)
O presente trabalho apresenta um estudo sobre o amolecimento após laminação e recozimento da AA 7075, uma liga de alumínio endurecível por precipitação . As amostras recebidas no estado T6 foram caracterizadas com auxílio das técnicas de microscopia óptica de luz polarizada, microscopia eletrônica de varredura, espectroscopia de raios X por dispersão de energia, difração de raios X, condutividade elétrica e dureza Vickers . As amostras foram então separadas em dois grupos. O primeiro sofreu um tratamento térmico de solubilização (485°C por 5 horas) enquanto o segundo foi submetido a um tratamento de superenvelhecimento (300°C por 5 horas) e, em seguida, ambos os grupos de amostras tratadas foram novamente caracterizadas pelas técnicas descritas anteriormente (exceto microscopia óptica) e laminadas a frio. Durante a etapa de laminação, constatou-se a dificuldade em causar deformação plástica na amostra solubilizada. Optou-se em conduzir o estudo com as amostras superenvelhecidas, que foram laminadas com reduções de 45%, 75% e 90% em espessura. A seguir, estas foram submetidas a tratamentos isotérmicos e isócronos com o objetivo de estudar a cinética de amolecimento das amostras deformadas a frio. As amostras superenvelhecidas e deformadas em 45% em redução de espessura, apresentaram somente indícios de início de recristalização (nas amostras tratadas a partir de 250°C por 1 hora) via EBSD, sendo que a maior parte do amolecimento pode ser explicada pelo mecanismo de recuperação. Além disso, a cinética de amolecimento das amostras recozidas nesse grupo apresentaram boa concordância com a lei logarítmica proposta por Kulhmann (1948) e (coincidentemente) também com o consolidado modelo JMAK. As amostras superenvelhecidas e deformadas em 75% e 90% apresentaram comportamento similar (isso é, principalmente recuperação) para recozimentos realizados em temperaturas de até 350°C por uma hora. Recozimentos realizados a 400°C promoveram a recristalização total das amostras desse grupo para tempos inferiores a 15 minutos. Dessa forma, não foi possível estudar a cinética de recristalização para esse segundo grupo de amostras. / This work presents a study about the softening after cold rolling and annealing of aluminium alloy AA 7075. Firstly, polarized light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrical conductivity and Vickers hardness have been used at the starting material (T6). The samples were then separated in two groups. The former underwent a solubilization heat treatment (485°C for 5 hours) whilst the latter underwent an overaging treatment to grow up the existing precipitates (300°C for 5 hours). Both groups of treated samples were again characterized by the techniques described above (except optical microscopy). In the rolling stage, the difficulty in straining the solubilized sample and the relative ease for doing so to the overaged sample was verified. It was therefore decided to conduct the study with the samples of the second group, which were 45%, 75% and 90% rolled in thickness reduction. Then, they underwent isothermal and isochronous treatments in order to study its softening kinetics by Vickers hardness measurements, polarized light optic microscopy and EBSD. The overaged and rolled samples (45% in thickness reduction) didn\'t present evidences of recrystallization except by very few grains found via EBSD (in samples treated from 250 ° C for 1 hour). So, most of the observed softening can be explained by recovery. In addition, the softening kinetics of the annealed samples in this group showed good agreement with the logarithmic law proposed by Kulhmann (1948) and (coincidentally) also with the consolidated JMAK model. The overaged samples that underwent thickness reduction of 75% and 90% showed a similar behavior (that is, mainly recovery) for annealing at temperatures up to 350 ° C. Annealing at 400 ° C promoted total recrystallization of the samples from this group (75% and 90% in thickness reduction) in less than 15 minutes. Thus, it was not possible to study the kinetics of recrystallization for this second group of samples.

Page generated in 0.0291 seconds