1 |
Investigation of Effect of Aluminium Oxide Nanoparticles on the Thermal Properties of Water-Based Fluids in a Double Tube Heat ExchangerPorgar, S., Rahmanian, Nejat 05 July 2021 (has links)
yes / The thermal behavior of aluminium oxide-water nanofluid in a double pipe carbon steel heat
exchanger was investigated in the present study. The overall heat transfer coefficient, Nusselt, and heat
transfer coefficient of nanofluid were compared with the base fluid. The volume fraction of the
nanoparticles was 1%. By adding nanoparticles to the fluid, the thermal properties of the base fluid
improved significantly. The hot and cold fluid flow was considered counter-current, and the nanofluid
was pumped into the inner tube and once into the outer tube, and the flow rate of each fluid was 0.05
kg/s. The convective heat transfer and the overall heat transfer coefficient enhanced 94% and 253% for
the hot fluid flow in the outer tube and 308 % and 144% for the hot fluid flow in the inner tube,
respectively. The pressure drop calculations also showed that the pressure drop would not change
significantly when using nanofluid.
|
2 |
Nanopore/Nanotube Pattern Formation through Focused Ion Beam Guided AnodizationTian, Zhipeng 15 January 2011 (has links)
Anodization is a kind of method that can produce oxide layer in a large area and on flexible shaped metals. In some specific conditions, anodic oxide layers exhibit interesting nanopore/nanotube structures. In this work, focused ion beam patterning method is introduced to general anodization, aiming to make highly ordered anodic porous alumina and titania nanotubes.
Focused ion beam guided porous anodic alumina is carried out by pre-designing hexagonal and square guiding patterns with different interpore distances on well electropolished Al foil before anodization. After anodization, the guiding interpore distance is found to affect the new pores' locations and shapes. Two important elements, electrical field and mechanical stress, are discussed for the development of the guiding pores and the generation of new pores. Based on the proposed pore growth mechanism, novel patterns, non-spherical pores, and large patterns across the grain boundaries are successfully produced.
The research on focused ion beam guided anodic titania nanotubes begins with surface polishing. The influence of four polishing conditions, as-received, chemically polished, mechanically polished, and electropolished samples, are investigated. A polished smooth sample provides a desired surface for focused ion beam guided anodization. Hexagonal guiding patterns with different interpore distances are created on Ti surface. Ordered nanotube arrays are produced, and the structure of the anodized guiding pattern is identified. / Master of Science
|
3 |
Confecção e caracterização de dosímetro luminescente de óxido de alumínio dopado com magnésio. / Luminescence dosimeter based on magnesium doped aluminum oxide: production and characterization.Bitencourt, José Francisco Sousa 09 June 2008 (has links)
O objetivo desse trabalho é confeccionar e caracterizar dosímetros luminescentes de óxido de alumínio, dopados com o elemento químico magnésio, para aplicação em dosimetria das radiações ionizantes. O óxido de alumínio é obtido pelo método do precursor polimérico; através da obtenção de resina polimérica que resulta em material cerâmico em pó após tratamentos térmicos em temperaturas específicas. As análises dosimétricas são realizadas durante ciclos de aquecimento de amostras que já tenham absorvido certa quantidade de radiação ionizante, ou dose radioativa, é a chamada Termoluminescência. Neste trabalho as fontes radioativas são emissoras de radiação- ou raios-X, que são mais presentes nos campos da radioterapia, radiodiagnóstico, geração de energia elétrica e estudos científicos. Devido às propriedades físicas do cristal, ocorre emissão de luz quando elétrons e buracos recebem energia térmica, permitindo a sua liberação de estados quânticos meta-estáveis e a recombinação com cargas opostas, liberando fótons no espectro UV/visível. A análise química por ICP AES indica as concentrações de 0,47; 0,88; 1,33; 2,61 e 3,36 mol% de Mg2+ para as cinco amostras preparadas com diferentes massas do reagente MgCO3; estes valores indicam que o procedimento para obtenção das amostras foi realizado com uniformidade adequada e, portanto, os resultados alcançados são proporcionais às concentrações de Mg2+. Inicialmente, analisando os resultados da difração de Raios-X, percebe-se que a menor temperatura utilizada para a calcinação do material cerâmico não foi suficiente para que se obtivesse a fase estrutural desejada (fase alfa), uma vez que a estrutura gama não exibiu propriedades dosimétricas para doses baixas. Este fato implicou em tratamentos térmicos adicionais em temperatura superior (1100°C). Os difratogramas obtidos comprovam a viabilidade do processo e metodologia, com amostras altamente cristalinas e ausência de fases desconhecidas que poderiam ocorrer caso houvesse contaminação. As medidas de TL acusaram uma forte emissão luminescente na região do espectro visível e UV, com picos de emissão em 125, 200, 280, 350 e 430°C, aproximadamente. Os últimos não puderam ser estudados para doses baixas, pois suas intensidades são sobrepostas pela incandescência do porta amostras. Entretanto, o pico de emissão em 200°C mostrou comportamento satisfatório e, portanto, empregado para estudos mais aprofundados. Os picos de alta temperatura (280, 360 e 430ºC) exibiram ótima resposta luminescente para altas doses absorvidas (acima de 100 Gy), sem que seu ponto de saturação fosse alcançado para doses de até 1 kGy. Variando sensivelmente a energia do feixe de irradiação foi possível determinar que a luminescência do material apresenta baixa dependência energética para energias abaixo de 40 keV, o que está de acordo com a teoria de interação energia/matéria. Acima desta energia, há diminuição do fenômeno fotoelétrico em detrimento do espalhamento Compton. As imagens obtidas por Microscopia Eletrônica de Transmissão detectaram, nas amostras dopadas, a presença de estruturas superficiais compostas por espinélio (MgAl2O4) sobre aglomerados de Al2O3. Este resultado faz crer que a ocorrência desta camada superficial aumenta significativamente a concentração de centros de recombinação e, conseqüentemente, a intensidade de emissão também é aumentada. / The aim of the present work is to obtain and characterize luminescent dosimeters made of magnesium doped aluminium oxide, for ionizing radiation dosimetry purposes. The material is produced by Pechini Method (US Patent 3.330.697, 1967), starting from a polymer that generates powder ceramic, after firing at predetermined temperatures. Dosimetric measurements were taken during heating cycles (Thermoluminescence) with gamma and X-rays irradiated samples. Due to physical properties of the crystal, light is emitted during heating, because of free carriers being released from trap centers and recombining with opposite sigh charges. Chemical analysis indicated the Mg2+ concentrations 0.47, 0.88, 1.32, 2.61 and 3.36 mol%; reactants masses and process parameters were adequate to obtain uniformity. From X-Ray Diffraction, samples calcinated at lower temperatures did not reach the properly structural phase. The gamma phase did not show dosimetric properties for the preferred spectra (UV/visible region). Calcinations at higher temperatures were necessary to obtain alpha phase, which exhibited TL emission. For doped sample, diffractograms indicated the occurrence of highly crystalline sample. TL glow curves showed high visible and UV emission, with peaks at 125, 200, 280, 365 and above 450°C. The lowest peak was faded within 24 hours after irradiation and those above 280°C could not be exactly determined due to peak overlapping. Nevertheless, the emission peak at 200°C showed itself a great achievement for the present work, because of its energy depth and dose response. For higher absorbed doses (above 100 Gy), the emission generated by deeper traps could be studied with more details: acceptable TL response and exponential growth were exhibited. The peak at 280 was not reported. Low energy dependence luminescence in observed for doses as high as 40 keV. This limitation is due to decreasing of photoelectric phenomena, which is responsible for charges trapping. Images obtained using Transmission Electron Microscopy detected surface layer in doped samples; such layer is composed by spinel (MgAl2O4). The presence of spinel layer increases recombination centers concentration, once luminescence enhancement was perceived for doped samples.
|
4 |
Materiais baseados em óxidos de nióbio e alumínio utilizados como suportes para catalisadores destinados à propulsão de satélites / Materials based on niobium and aluminum oxides used as supports for catalysts for the propulsion satellitesSoares, Márcio Steinmetz 24 January 2017 (has links)
Neste trabalho foram preparados materiais constituídos por Al2O3 e Nb2O5, na forma de grãos esferoidais para serem usados como suporte de catalisadores aplicados à propulsão. Os suportes foram preparados por quatro diferentes métodos: impregnação úmida do óxido de alumínio moldado por uma solução alcoólica de cloreto de nióbio (NbCl5); impregnação seca do óxido de alumínio por uma solução alcoólica de NbCl5; co-precipitação dos precursores de óxido de alumínio e óxido de nióbio; e mistura física dos precursores desses óxidos previamente autoclavados separadamente. Entre esses métodos, os suportes que apresentaram melhores características para aplicação em propulsão a monopropelente hidrazina (N2H4) foram aqueles preparados por mistura física, contendo 20% m/m de óxido de nióbio (Su20MF) e por impregnações secas sucessivas, contendo 10% m/m de óxido de nióbio (Su10IS). A adição do óxido de nióbio ao óxido de alumínio resultou em acentuado aumento da resistência mecânica à compressão, mas não causou variação significativa do número e força dos sítios ácidos de Lewis, em função dos tratamentos de calcinação efetuados a 873 K por 5 horas. Todos os suportes foram impregnados com solução de H2IrCl6 e após tratamentos de redução sob H2, obteve-se catalisadores de irídio suportados, com elevados teores metálicos, CAT-20Ir, contendo aproximadamente 20% m/m de Ir disperso na superfície do suporte Su10IS, e CAT-27Ir, contendo aproximadamente 27% m/m de Ir disperso na superfície do suporte Su20MF. Caracterizações por quimissorção de H2 e por MET/EDS mostraram que o irídio fixou-se quase que exclusivamente sobre o óxido de alumínio, gerando partículas metálicas com diâmetros médios tanto maiores quanto menores as áreas superficiais expostas desse óxido. Testes efetuados em bancada com as reações de decomposição de hidrazina e de amônia revelaram que a reação com hidrazina ocorre de forma completa em temperaturas acima de 393 K, gerando exclusivamente amônia e nitrogênio, enquanto que a decomposição da amônia inicia-se em temperaturas superiores e diferenciadas, dependendo do catalisador. Durante a reação da hidrazina, a reação de decomposição da amônia formada, produzindo hidrogênio foi acompanhada, sendo tanto menor quanto maior o diâmetro médio das partículas de irídio, sendo que a seletividade ao hidrogênio mostrou ser uma função linear do diâmetro médio, ao menos entre 24 Å e 40 Å. Esse comportamento se deve ao fato de que a decomposição da amônia é uma reação sensível à estrutura da fase ativa destes catalisadores. Já os testes efetuados em propulsores de 5 N de empuxo no Banco de Teste com Simulação de Altitude (BTSA), evidenciaram um aumento da temperatura, da pressão de câmara e também da força de empuxo, devido à menor decomposição da amônia e maiores tempos para o início da decomposição da hidrazina, efeito este relacionado ao número específico de sítios ativos presentes nas superfícies dos catalisadores. / In this work were prepared supports consisting of Al2O3 and Nb2O5, in the form of spheroidal grains by four different methods: wet impregnation of the aluminum oxide molded an alcoholic solution of niobium chloride (NbCl5); dry impregnation of aluminum oxide in an alcoholic solution of NbCl5; co-precipitation of the precursor of aluminum oxide and niobium oxide; and physical mixing of precursors of these oxides previously autoclaved separately. Among these methods, the supports that showed the best characteristics for application in propulsion monopropellant hydrazine were those prepared by physical mixture containing 20 wt % niobium oxide (Su20MF) and successive dry impregnations, containing 10 wt % niobium oxide (Su10IS).The addition of niobium oxide in aluminum oxide resulted in a significant increase in compressive strength of these selected supports, but caused no significant change in the number and strength of Lewis acid site, which was attributed to the calcination treatment carried out at 873 K by 5 hours. These supports were impregnated with H2IrCl6 solution and after reduction treatment under H2, were obtained supported iridium catalysts with high metal contents, named CAT-20Ir containing approximately 20 wt % of Ir dispersed on the support Su10IS and CAT-27Ir containing approximately 27 wt % of Ir Su20MF dispersed on the support. Characterization by chemisorption of H2 and by TEM/EDS showed that the iridium was anchored almost exclusively on aluminum oxide, generating metal particles with average diameters greater. Tests carried out in laboratory with decomposition of hydrazine and ammonia revealed that the reaction with hydrazine is completely in temperatures above 393 K, generating only ammonia and nitrogen, while the decomposition of ammonia, the reaction initiation above different temperatures depending on the catalyst. During decomposition hydrazine another accompanied reaction was the decomposition of ammonia generated, producing hydrogen. The selectivity to hydrogen showed to be a linear function of the mean diameter particle of iridium, least between 24 Å and 40 Å , these results were attributed to the fact that the decomposition of ammonia is a sensitive reaction to the structure of the active phase of these catalysts. Tests carried out at the Altitude Simulation Test Facility (BTSA/INPE) showed the following effects caused by Nb2O5 addition to iridium catalyst supports: increase of temperature, chamber pressure and thrust power, due to a smaller ammonia decomposition; and increase of time for hydrazine decomposition when there is an excessive reduction of the specific number of active sites.
|
5 |
Stabilisation of metal nanoparticles by confinement on curved supportsBell, Tamsin Elizabeth January 2019 (has links)
Supported metal nanoparticles present unique chemical and physical properties compared to their bulk counterparts. Their high surface energy provides outstanding catalytic activities, opening the door not only to improved catalytic systems but also to new catalytic routes. However, their high surface energy and liquid-like properties are responsible for their instability, usually leading to agglomeration under reaction conditions. This thesis seeks to investigate a novel nanoparticle stabilisation approach by physical confinement on curved supports. Specifically, the project focusses on the stabilisation of cobalt and gold nanoparticles on nanostructured -Al2O3 supports, motivated by the industrial interest of Sasol UK. The research hypothesis is validated by detailed characterisation and catalytic testing of a range of catalysts using different metal loadings and support morphologies. To enable this study, the mechanism of the hydrothermal synthesis of a series of nanostructured -Al2O3 supports with either flat or curved surfaces and differing degrees of curvature has been elucidated, leading to the development of a semi-continuous manufacturing process. Varying the method for loading cobalt onto -Al2O3 supports highlights the implications of method selection on the particle size, reducibility, composition and the tendency to form irreducible cobalt oxides, all of which affect the catalytic activity. The ability to obtain and stabilise small nanoparticles with low loading (1 wt% Co) without the formation of irreducible cobalt oxides exposes the beneficial effect of the support curvature. Specifically, the stabilisation effect is theorised to be effective under the condition where the ratio of the diameter of the nanoparticle (P) and the nanorod (R) is less than one, P:R < 1. In several cases, after cobalt or gold reduction, elongation of the nanoparticles, as opposed to agglomeration, is observed by electron microscopy confirming that the particles are physical confined by the curved surface in all directions except along the nanorod axis. In these cases, highly active Co/-Al2O3 and Au/-Al2O3 catalysts are reported for NH3 decomposition and CO oxidation respectively. For higher metal loadings (> 5 wt% Co), where the particles are the same size or larger than the diameter of the nanorod cross-section, no noticeable stabilisation effect is reported. The results of this thesis are scientifically and industrially important. If applied correctly, this novel nanoparticle stabilisation strategy could be used to design catalysts with improved activity and stability, resulting in lower operational costs and improved resource efficiency.
|
6 |
Controlled interlayer between titanium carbon-nitride and aluminiumoxideMunktell von Fieandt, Sara January 2011 (has links)
In the industry of metal cutting tools the conditions are extreme; the temperature can vary thousand degrees rapidly and the pressure can be tremendously high. To survive this kind of stress the cutting tool must be both hard and tough. In order to obtain these properties different coatings are used on a base of cemented carbide, WC-Co. Common coatings are hard ceramics like titanium nitride and titanium carbon-nitride with an outer layer of aluminium oxide. In this thesis the possibility of using titanium dioxide as an interlayer between titanium carbon-nitride and aluminium oxide to control the morphology and phase of aluminium oxide is investigated. Of the different aluminium oxide phases only the alpha-Al2O3 is stable. The titanium carbon-nitride coatings are made by CVD (chemical vapour deposition); also the alumina is deposited by CVD. The titanium dioxide was deposited by atomic layer deposition (ALD) which is a sequential CVD technique that allows a lower deposition temperature and better control of the film growth than CVD. The obtained thin films were analyzed using XRD, Raman spectroscopy, ESCA and SEM. To test the adhesion of the coatings the samples were sand blasted. A thin interlayer of titanium dioxide causes the aluminium oxide to grow as alpha-Al2O3, thinner TiO2 gave better adhesion.
|
7 |
Processing And High Temperature Deformation Of Pure And Magnesia Doped AluminaSwaroop, N R Sathya 01 1900 (has links)
Creep resistance is an important design criterion at high temperatures especially when continuous attempts are made to increase the efficiencies by increasing the operating temperatures. Alumina is an important high temperature material and in addition to that it is used in wide variety of applications such as substrates for electronic packaging, spark plugs, envelopes for sodium vapour lamps, cutting tools (when reinforced with silicon carbide) and in artificial joint prostheses.
Studies on creep in alumina. have started as early as 1961. There are differing mechanisms proposed to explain the creep behaviour of alumina in the literature, but until now there is no any unanimous decision as to what the rate controlling mechanism is. Magnesia doped at ppm levels can produce significant changes in the microstructure of alumina, the most important consequence of that being the grain growth inhibition, which renders alumina superplastic. However, in a stoichiometric oxide like alumina, small impurities can create extrinsic defects which would change the diffusivities and creep rates. Therefore the background impurities in alumina should be kept to a minimum, if small dopant effects have to be studied. The present study was undertaken making use of high purity alumina powder and comparing the grain growth and creep properties of pure and magnesia doped alumina, especially since no such investigation was carried out in the recent past with high purity alumina.
Pure alumina was processed by cold compaction followed by cold isostatic pressing (CIP) and pressureless sintering in air at 1773 K for 1 hour. Magnesia doped alumina was prepared by calcining a mixture of alumina and magnesium nitrate at 973 K for 2 hours followed by cold compaction, CIPing and pressureless sintering in air at 1773 K. Both pure and magnesia doped alumina were further annealed at 1873 K for various times to get grain sizes in the ranges of 1-5 μm.
Grain growth kinetics of pure and magnesia doped alumina were studied at 1823 and 1873 K. The parameter Kg which quantifies the mobility of the grain boundary was got. It was found that Kg had decreased in the magnesia doped alumina (in comparison with pure alumina) by a factor of about 3 to 4 which was marginal and insignificant. The grain sizes followed a log normal distribution in both the cases, indicative of normal grain growth.
Creep studies were conducted on pure and magnesia doped alumina in three modes, namely, constant stress, temperature jump and stress jump test. The temperature range used was 1673 to 1773 K and the stress range used was 10 to 100 MPa. The creep parameters were found to be n~1.6, p~3.7 and Q-545 kJ mol"1 for pure alumina and n~l .3, p~3.0 and Q~460 kJ mol-1 for magnesia doped alumina. The creep rates in the case of magnesia doped alumina were found to have increased by a factor of 2 to 3, in comparison with pure alumina. The increase in creep rates were found to be insignificant. The creep data were analyzed and the possibility of the dislocation and interface reaction controlled creep mechanisms were ruled out since they were inconsistent with the data. It was found, from creep parameters and the comparison of theoretical Coble and Nabarro-Herring creep rates with the experimental rates, that Coble creep might be rate controlling. The activation energy values suggested that aluminium ion diffusing along grain boundary might be the rate controlling species. However, when the theoretical creep rates considering various species were compared, the rate controlling species turned out to be oxygen ion diffusing along the grain boundary.
|
8 |
High power carbon-based supercapacitorsWade, Timothy Lawrence January 2006 (has links) (PDF)
Energy storage devices are generally evaluated on two main requirements; power and energy. In supercapacitors these two performance criteria are altered by the capacitance, resistance and voltage. (For complete abstract open document)
|
9 |
Soldering in High Pressure Die Casting and its Prevention by Lubricant and Oxide LayersFraser, Darren Timothy Unknown Date (has links)
Soldering results from the interfacial interactions between the die and the casting alloy during high pressure die casting and is one of the major die failure modes. To prevent this occurring, lubricant layers and surface coatings are used to act as a barrier between the die and the casting alloy. The microstructures of a series of soldered layers on H13 tool steel core pins were examined after conducting high pressure die casting experiments with a specially designed die using removable core pins and Al-11Si-3Cu casting alloy. This showed that first, a casting alloy build-up layer formed, and then intermetallic phases nucleated at the die steel interface and grew to cover the entire surface in subsequent casting cycles. The structures of intermetallic layers formed during immersion of H13 tool steel into an Al-11Si-3Cu casting alloy melt were studied by X-ray diffraction and energy dispersive spectroscopy (EDS). A thick composite layer away from the H13 steel substrate consisted of irregular intermetallic phases and solidified casting alloy. A thin intermetallic layer was present between the composite layer and an inner compact layer next to the steel substrate. The irregular intermetallic phase in the thick composite layer away from the H13 steel substrate was identified to have a body centre cubic (bcc) structure, abcc-( FeSiAlCrMnCu). The thin and continuous intermetallic layer between the composite layer and the inner compact layer was found to be structurally isomorphous with aH-Fe2SiAl8. The compositional differences observed between aH and abcc phases indicated that the latter consisted of a higher amount of chromium, manganese, copper, and a lower amount of iron. It was likely that the presence of chromium, manganese and copper in the H13 tool steel caused the transformation of aH®abcc. The inner compact layer next to the steel substrate was identified to be orthorhombic h-Fe2Al5 containing silicon and chromium. An examination of lubricants to prevent soldering in high pressure die casting in conjunction with Nissan Casting Australia Pty Ltd. found that soldering was reduced by using a suitable lubricant. The chemistry of the lubricant, spray parameters, and die surface temperature were important factors in producing a protective lubricant layer. It was found that lubricant containing polypropylene waxes prevented soldering significantly better than lubricant containing polyethylene waxes. It was also found that the lubricant containing polypropylene waxes had lower surface tension. An examination of the use of iron oxide layers to prevent soldering in high pressure die casting was performed. H13 tool steel was oxidised in air and produced porous iron oxide with a mixture of haematite (Fe2O3) and magnetite (Fe3O4). These porous iron oxides did not completely prevent the H13 steel from soldering in immersion tests as intermetallic cones formed at the surface of the steel. Commercial steam tempering of H13 steel produced more compact iron oxide layers with magnetite (Fe3O4) and haematite (Fe2O3) structures. It was found that these compact iron oxide layers offered better protection against soldering than the porous layers created in air. Pure iron oxidised in a CO2/H2 gas mixture at a ratio of 95:5 at 550°C produced structurally pure, compact magnetite (Fe3O4) layers. H13 steel oxidised in a CO2/H2 gas mixture at a ratio of 95:5 at 550°C produced compact iron oxide layers that showed only magnetite (Fe3O4) structure. The magnetite (Fe3O4) layer containing chromium, manganese, silicon and vanadium formed next to the H13 substrate was found to be a very adherent layer and protected H13 steel from soldering in high pressure die casting experiments with a specially designed die using removable core pins and Al-11Si-3Cu casting alloy. An examination of aluminium oxide layers to prevent soldering in high pressure die casting was performed. Incoloy MA956 containing 4.5 wt.% aluminium, oxidised in air at 1100°C, produced a single, compact, adherent oxide layer with a-alumina (Al2O3) structure, that prevented the formation of intermetallic phases between aluminium alloy and Incoloy MA956 during high pressure die casting. However, non-reactive casting alloy build-up formed on the oxide coatings, similarly to physical vapour deposition (PVD) and vanadium carbide coatings. It was found that the thickness of the non-reactive casting alloy build-up was reduced by decreasing the roughness of the oxide coatings by lightly grinding of the surface of the coatings. The industrial application of these findings are discussed and directions for further research are presented.
|
10 |
Confecção e caracterização de dosímetro luminescente de óxido de alumínio dopado com magnésio. / Luminescence dosimeter based on magnesium doped aluminum oxide: production and characterization.José Francisco Sousa Bitencourt 09 June 2008 (has links)
O objetivo desse trabalho é confeccionar e caracterizar dosímetros luminescentes de óxido de alumínio, dopados com o elemento químico magnésio, para aplicação em dosimetria das radiações ionizantes. O óxido de alumínio é obtido pelo método do precursor polimérico; através da obtenção de resina polimérica que resulta em material cerâmico em pó após tratamentos térmicos em temperaturas específicas. As análises dosimétricas são realizadas durante ciclos de aquecimento de amostras que já tenham absorvido certa quantidade de radiação ionizante, ou dose radioativa, é a chamada Termoluminescência. Neste trabalho as fontes radioativas são emissoras de radiação- ou raios-X, que são mais presentes nos campos da radioterapia, radiodiagnóstico, geração de energia elétrica e estudos científicos. Devido às propriedades físicas do cristal, ocorre emissão de luz quando elétrons e buracos recebem energia térmica, permitindo a sua liberação de estados quânticos meta-estáveis e a recombinação com cargas opostas, liberando fótons no espectro UV/visível. A análise química por ICP AES indica as concentrações de 0,47; 0,88; 1,33; 2,61 e 3,36 mol% de Mg2+ para as cinco amostras preparadas com diferentes massas do reagente MgCO3; estes valores indicam que o procedimento para obtenção das amostras foi realizado com uniformidade adequada e, portanto, os resultados alcançados são proporcionais às concentrações de Mg2+. Inicialmente, analisando os resultados da difração de Raios-X, percebe-se que a menor temperatura utilizada para a calcinação do material cerâmico não foi suficiente para que se obtivesse a fase estrutural desejada (fase alfa), uma vez que a estrutura gama não exibiu propriedades dosimétricas para doses baixas. Este fato implicou em tratamentos térmicos adicionais em temperatura superior (1100°C). Os difratogramas obtidos comprovam a viabilidade do processo e metodologia, com amostras altamente cristalinas e ausência de fases desconhecidas que poderiam ocorrer caso houvesse contaminação. As medidas de TL acusaram uma forte emissão luminescente na região do espectro visível e UV, com picos de emissão em 125, 200, 280, 350 e 430°C, aproximadamente. Os últimos não puderam ser estudados para doses baixas, pois suas intensidades são sobrepostas pela incandescência do porta amostras. Entretanto, o pico de emissão em 200°C mostrou comportamento satisfatório e, portanto, empregado para estudos mais aprofundados. Os picos de alta temperatura (280, 360 e 430ºC) exibiram ótima resposta luminescente para altas doses absorvidas (acima de 100 Gy), sem que seu ponto de saturação fosse alcançado para doses de até 1 kGy. Variando sensivelmente a energia do feixe de irradiação foi possível determinar que a luminescência do material apresenta baixa dependência energética para energias abaixo de 40 keV, o que está de acordo com a teoria de interação energia/matéria. Acima desta energia, há diminuição do fenômeno fotoelétrico em detrimento do espalhamento Compton. As imagens obtidas por Microscopia Eletrônica de Transmissão detectaram, nas amostras dopadas, a presença de estruturas superficiais compostas por espinélio (MgAl2O4) sobre aglomerados de Al2O3. Este resultado faz crer que a ocorrência desta camada superficial aumenta significativamente a concentração de centros de recombinação e, conseqüentemente, a intensidade de emissão também é aumentada. / The aim of the present work is to obtain and characterize luminescent dosimeters made of magnesium doped aluminium oxide, for ionizing radiation dosimetry purposes. The material is produced by Pechini Method (US Patent 3.330.697, 1967), starting from a polymer that generates powder ceramic, after firing at predetermined temperatures. Dosimetric measurements were taken during heating cycles (Thermoluminescence) with gamma and X-rays irradiated samples. Due to physical properties of the crystal, light is emitted during heating, because of free carriers being released from trap centers and recombining with opposite sigh charges. Chemical analysis indicated the Mg2+ concentrations 0.47, 0.88, 1.32, 2.61 and 3.36 mol%; reactants masses and process parameters were adequate to obtain uniformity. From X-Ray Diffraction, samples calcinated at lower temperatures did not reach the properly structural phase. The gamma phase did not show dosimetric properties for the preferred spectra (UV/visible region). Calcinations at higher temperatures were necessary to obtain alpha phase, which exhibited TL emission. For doped sample, diffractograms indicated the occurrence of highly crystalline sample. TL glow curves showed high visible and UV emission, with peaks at 125, 200, 280, 365 and above 450°C. The lowest peak was faded within 24 hours after irradiation and those above 280°C could not be exactly determined due to peak overlapping. Nevertheless, the emission peak at 200°C showed itself a great achievement for the present work, because of its energy depth and dose response. For higher absorbed doses (above 100 Gy), the emission generated by deeper traps could be studied with more details: acceptable TL response and exponential growth were exhibited. The peak at 280 was not reported. Low energy dependence luminescence in observed for doses as high as 40 keV. This limitation is due to decreasing of photoelectric phenomena, which is responsible for charges trapping. Images obtained using Transmission Electron Microscopy detected surface layer in doped samples; such layer is composed by spinel (MgAl2O4). The presence of spinel layer increases recombination centers concentration, once luminescence enhancement was perceived for doped samples.
|
Page generated in 0.0318 seconds