• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 9
  • 6
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 51
  • 51
  • 12
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Deposição e caracterização de filmes finos de GaAs e 'Al IND. 2''O IND. 3' para potencial utilizado em transistores /

Santos, Júlio César dos. January 2009 (has links)
Orientador: Luis Vicente de Andrade Scalvi / Banca: José Antonio Malmonge / Banca: José Humberto Dias da Silva / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: Neste trabalho foi realizada a deposição através da técnica de evaporação resistiva, de filmes finos de GaAs (arseneto de gálio) e de Al (alumínio) com posterior oxidação deste último, formando 'Al IND. 2''O IND. 3' (óxido de alumínio ou alumina) e a caracterização dos filmes de GaAs e da heteroestrutura formada por 'Al IND. 2''O IND. 3' e GaAs. A confecção do dispositivo combinando estes compostos serviu para a investigação das características relevantes do sistema para potencial aplicação em transistores. O trabalho compreendeu investigação sobre as condições de deposição, e foram avaliadas principalmente as características elétricas dos filmes produzidos individualmente. Os resultados apresentados incluem: resistividade em função da temperatura, corrente-voltagem em função da temperatura, difração de raios-X e transmitância na região do infravermelho. Para caracterização do desempenho do sistema 'Al IND. 2''O IND. 3'/GaAs, um transistor simples foi construído sob um substrato de vidro borossilicato com uma camada de GaAs e outra de 'Al IND. 2''O IND. 3'. Os contatos de fonte, dreno e gate foram feitos de In. Essa estrutura permite a medida da corrente de fuga e a avaliação de outras características do sistema. Neste dispositivo foram avaliadas as características corrente-voltagem em função da temperatura, e também a interação com luz, já que GaAs, por apresentar gap direto, torna-se atraente para aplicações opto-eletrônicas. Assim medidas de elétricas foto-induzidas foram realizadas com excitação com fontes de luz branca. Com o intuito de se avaliar a qualidade dos filmes de GaAs obtidos pela evaporação resistiva, tanto a caracterização estrutural quando elétrica também foram feitas em filmes finos de GaAs depositados por sputtering, de modo a se ter um padrão de comparação. / Abstract: In this work, the deposition of GaAs (gallium arsenide) and Al (aluminum) thin films is carried out by the resistive evaporation technique. In the latter case, an oxidation of the film is accomplished, leading to 'Al IND. 2''O IND. 3' (alumina) formation. The characterization of GaAs thin films and the heterostructure formed by 'Al IND. 2''O IND. 3' and GaAs is also carried out. The elaboration of the device combining these compounds allows investigating the relevant characteristics of this system to potential application in transistors. The work evolved investigation on the deposition conditions, and the electrical characteristics of the films were also evaluated separately. Results includes: resistivity as function of temperature, X-ray diffraction and near infrared transmittance. For characterization of the performance of the 'Al IND. 2''O IND. 3'/GaAs system, a simple transistor was built on a borosilicate glass substrate, with a 'Al IND. 2''O IND. 3' layer on top of a GaAs layer. The contacts of source, drain and gate were done using In. This structure allows evaluating the leak current and other characteristics of this system. In this device, it was evaluated the current - voltage characteristics and the interaction with light, because GaAs, due to its direct bandgap, become very attractive for opto-electronic applications. The, the photo-induced electrical measurements were done under excitation with white light. Aiming the evaluation of the quality of films deposited by the resistive evaporation technique, electrical as well as structural characterization were also carried out for GaAs thin films deposited by sputtering, in order to have a comparing parameter. / Mestre
12

Materiais baseados em óxidos de nióbio e alumínio utilizados como suportes para catalisadores destinados à propulsão de satélites / Materials based on niobium and aluminum oxides used as supports for catalysts for the propulsion satellites

Márcio Steinmetz Soares 24 January 2017 (has links)
Neste trabalho foram preparados materiais constituídos por Al2O3 e Nb2O5, na forma de grãos esferoidais para serem usados como suporte de catalisadores aplicados à propulsão. Os suportes foram preparados por quatro diferentes métodos: impregnação úmida do óxido de alumínio moldado por uma solução alcoólica de cloreto de nióbio (NbCl5); impregnação seca do óxido de alumínio por uma solução alcoólica de NbCl5; co-precipitação dos precursores de óxido de alumínio e óxido de nióbio; e mistura física dos precursores desses óxidos previamente autoclavados separadamente. Entre esses métodos, os suportes que apresentaram melhores características para aplicação em propulsão a monopropelente hidrazina (N2H4) foram aqueles preparados por mistura física, contendo 20% m/m de óxido de nióbio (Su20MF) e por impregnações secas sucessivas, contendo 10% m/m de óxido de nióbio (Su10IS). A adição do óxido de nióbio ao óxido de alumínio resultou em acentuado aumento da resistência mecânica à compressão, mas não causou variação significativa do número e força dos sítios ácidos de Lewis, em função dos tratamentos de calcinação efetuados a 873 K por 5 horas. Todos os suportes foram impregnados com solução de H2IrCl6 e após tratamentos de redução sob H2, obteve-se catalisadores de irídio suportados, com elevados teores metálicos, CAT-20Ir, contendo aproximadamente 20% m/m de Ir disperso na superfície do suporte Su10IS, e CAT-27Ir, contendo aproximadamente 27% m/m de Ir disperso na superfície do suporte Su20MF. Caracterizações por quimissorção de H2 e por MET/EDS mostraram que o irídio fixou-se quase que exclusivamente sobre o óxido de alumínio, gerando partículas metálicas com diâmetros médios tanto maiores quanto menores as áreas superficiais expostas desse óxido. Testes efetuados em bancada com as reações de decomposição de hidrazina e de amônia revelaram que a reação com hidrazina ocorre de forma completa em temperaturas acima de 393 K, gerando exclusivamente amônia e nitrogênio, enquanto que a decomposição da amônia inicia-se em temperaturas superiores e diferenciadas, dependendo do catalisador. Durante a reação da hidrazina, a reação de decomposição da amônia formada, produzindo hidrogênio foi acompanhada, sendo tanto menor quanto maior o diâmetro médio das partículas de irídio, sendo que a seletividade ao hidrogênio mostrou ser uma função linear do diâmetro médio, ao menos entre 24 Å e 40 Å. Esse comportamento se deve ao fato de que a decomposição da amônia é uma reação sensível à estrutura da fase ativa destes catalisadores. Já os testes efetuados em propulsores de 5 N de empuxo no Banco de Teste com Simulação de Altitude (BTSA), evidenciaram um aumento da temperatura, da pressão de câmara e também da força de empuxo, devido à menor decomposição da amônia e maiores tempos para o início da decomposição da hidrazina, efeito este relacionado ao número específico de sítios ativos presentes nas superfícies dos catalisadores. / In this work were prepared supports consisting of Al2O3 and Nb2O5, in the form of spheroidal grains by four different methods: wet impregnation of the aluminum oxide molded an alcoholic solution of niobium chloride (NbCl5); dry impregnation of aluminum oxide in an alcoholic solution of NbCl5; co-precipitation of the precursor of aluminum oxide and niobium oxide; and physical mixing of precursors of these oxides previously autoclaved separately. Among these methods, the supports that showed the best characteristics for application in propulsion monopropellant hydrazine were those prepared by physical mixture containing 20 wt % niobium oxide (Su20MF) and successive dry impregnations, containing 10 wt % niobium oxide (Su10IS).The addition of niobium oxide in aluminum oxide resulted in a significant increase in compressive strength of these selected supports, but caused no significant change in the number and strength of Lewis acid site, which was attributed to the calcination treatment carried out at 873 K by 5 hours. These supports were impregnated with H2IrCl6 solution and after reduction treatment under H2, were obtained supported iridium catalysts with high metal contents, named CAT-20Ir containing approximately 20 wt % of Ir dispersed on the support Su10IS and CAT-27Ir containing approximately 27 wt % of Ir Su20MF dispersed on the support. Characterization by chemisorption of H2 and by TEM/EDS showed that the iridium was anchored almost exclusively on aluminum oxide, generating metal particles with average diameters greater. Tests carried out in laboratory with decomposition of hydrazine and ammonia revealed that the reaction with hydrazine is completely in temperatures above 393 K, generating only ammonia and nitrogen, while the decomposition of ammonia, the reaction initiation above different temperatures depending on the catalyst. During decomposition hydrazine another accompanied reaction was the decomposition of ammonia generated, producing hydrogen. The selectivity to hydrogen showed to be a linear function of the mean diameter particle of iridium, least between 24 Å and 40 Å , these results were attributed to the fact that the decomposition of ammonia is a sensitive reaction to the structure of the active phase of these catalysts. Tests carried out at the Altitude Simulation Test Facility (BTSA/INPE) showed the following effects caused by Nb2O5 addition to iridium catalyst supports: increase of temperature, chamber pressure and thrust power, due to a smaller ammonia decomposition; and increase of time for hydrazine decomposition when there is an excessive reduction of the specific number of active sites.
13

Pore-spanning lipid membranes as a tool to study membrane permeabilization by antimicrobial peptides

Neubacher, Henrik 09 March 2017 (has links)
No description available.
14

The Processing, Consolidation And Deformation Behavior Of Bulk Amorphous AI2O3-Y2O3 Ceramics

Paul, Arindam 02 1900 (has links) (PDF)
Processing of Bulk Metastable Oxide Ceramics Oxide ceramic materials are extensively used in various modern application domains which require properties such as high temperature stability or creep resistance, wear resistance, chemical stability, useful electronic, optical and magnetic properties. In the diverse arena of materials technology that interlinks processing, structure, properties and performance, the advancement of new processing techniques to develop oxide ceramics facilitates the extension and refinement of their desirable properties and also mitigate their limitation in terms of application. Progress in processing science/technology offers a real impetus to the development of metastable ceramics with novel, non-equilibrium structures that exhibit scientifically interesting properties and have the potential to cater to the requirements of modern application areas. In the absence of the equilibrium state of a material system, metastable states can be formed with amorphous phases, extended solid solutions, metastable crystal structures and nanocrystallinity. Such metastable states can be retained by imposing kinetic constraints, which means that under the conditions of temperature and pressure, atomic mobilities are inadequate for the transformation. Metastable ceramics that are produced using non-equilibrium processing routes, such as rapid solidification, vapour deposition, spray pyrolysis, sol-gel technique etc., have been known to possess potentially useful properties, such as hard and soft magnetic characteristics, semiconductivity, varistor action, optical transmittivity and superconductivity. Apart from possessing attractive properties, a metastable phase may also serve as a precursor to a desired microstructure; for instance, controlled crystallization of an amorphous phase is a possible way enroute to nanocrystalline structure. It was well recognized that the comprehensive study and use of nanostructured and other metastable ceramics requires consolidation of the fine discontinuous forms (powders or flakes) produced from non-equilibrium processing routes, into bulk shapes with greater control on the fine scale of the structure. Such efforts have not been entirely successful. Non-equilibrium processing techniques do not produce the metastable materials in bulk form. Consolidation of metastable ceramics into dense forms needs high temperatures, mechanical activation (in the form of static pressures or shock waves), or a combination of both. Such activation may trigger the transformation of the desired metastable phase into a more stable phase with concurrent grain growth. Conversely, conditions that allow the desired metastable phase to be retained may not be adequate for complete densification. The subject of the present thesis is two-fold: (i) processing of dense amorphous Al2O3-Y2O3 materials through a novel densification route involving hot pressing of amorphous powders, produced by co-precipitation, at low temperatures and moderately high pressures, (ii) detail study of possible deformation mechanisms of the amorphous phase from mechanical testing at elevated temperatures. Unusual deformation behavior of the bulk amorphous material has been related to the densification process. Development of Pressure Consolidation Technique Amorphous powder of composition Al2O3-15 mol% Y2O3 (A15Y) was synthesized by co-precipitating a hydroxide from metal nitrate precursor’s solution by using ammonium hydroxide. Chemical homogeneity was ensured by a molecular level mixing of precursors of aluminium and yttrium at room temperature. The as-precipitated powder undergoes thermal decomposition (pyrolysis) to an amorphous oxide by ~770-800o C. The crystallization temperature was found from thermal analysis to be ~900o C, with γ-Al2O3 as the initial product of crystallization. The true density of the amorphous A15Y phase was measured to be only 2.69 g cm-3 by pycnometry, which is ~2/3 of the assemblage of equilibrium crystalline phases consisted of Al2O3 and YAG. Uniaxial hot pressing was performed with decomposed, classified powders (large agglomerates with sizes more than 10 µm were removed by sedimentation technique) at low temperature of about 630-640o C and moderately high pressure of 710-750 MPa. Pressure was held constant for 30-45 minutes. Cold compaction at pressures of 50-65 MPa for 8-10 minutes was carried out prior to hot pressing to ensure green strength of the compacts. All hot-pressed compacts revealed significant densification (95-96% relative densities) with uniformly distributed fine porosity. X-ray diffraction, electron microscopy analysis, Raman spectroscopy and differential thermal analysis established the amorphous nature of the dense, hot-pressed pellets. The amorphous phase displays an elastic modulus of ~ 50-60 GPa and a hardness of 4-5 GPa, which are considerably lower than those of the crystalline counterpart. Deformation Behavior of Amorphous Al2O3-Y2O3 The experiments described above clearly demonstrated the feasibility of producing bulk metastable ceramics in the Al2O3-Y2O3 system by a novel consolidation (viz., low temperature-high pressure) route of amorphous powders. This section of the thesis concentrates on studying the deformation mechanisms of the amorphous phase, which are found to be characteristic of the temperature domain of the experiment. Uniaxial compression tests at temperatures of 650-850o C with constant engineering strain rates of ~3-4 X 10-4 s-1 were conducted on dense amorphous samples made from the hot-pressed compacts. At a temperature of 850o C, i.e., close to the crystallization temperature, the amorphous phase was characterized by homogeneous deformation with continuous work hardening after yielding, accompanied by an increase in the true density of this glass by 10-12%. X-ray and electron microscopy analysis confirmed that the density increase was not due to the formation of nano-crystals at this high temperature. Raman spectroscopy and differential thermal analysis further corroborates that the glass was amorphous even after deformation. No shear instabilities were formed at the side surfaces due to the deformation. Significantly large compressive longitudinal strains up to about 28% were observed before unloading. Moreover, an interrupted loading-unloading test established that the bulk density increase was monotonic with the existence of multiple amorphous states enroute to a succession of denser structures. A simultaneous increase in both hardness (H) and modulus (E) of the amorphous phase of up to 100% after deformation bolstered this experimental observation of bulk density increment at constant porosity. The above evidence clearly points towards significant structural changes of the amorphous phase during high temperature deformation process and therefore a phenomenon of molecular densification of the amorphous structure through a hierarchy of dense amorphous phases was hypothesized, analogous to density or entropy driven amorphous-to-amorphous phase transitions (polyamorphism). Note that the densification described here does not refer to the conventional removal of porosity in a ceramics. At an intermediate temperature of 725o C, which is significantly (~200o C) below the crystallization temperature, plastic deformation commences at a stress (yield stress) of 700-780 MPa (considerably higher compared to the yield stress at 850o C) and continued to deform plastically with a slowly decreasing flow stress before reaching a plateau. Thus, the glass exhibited flow softening, in contrast to flow hardening observed at 850oC. Plastic deformation of this glass is largely non-viscous through shear instabilities (akin to the low temperature deformation behavior of metallic glass) and resulted in 8% increment in bulk density after deformation. Once again, the amorphous nature of the glass after deformation was confirmed by X-ray and electron microscopy analysis. Therefore, this intermediate temperature domain was characterized by both densification and shear. Deformation at even lower temperature, viz., at the temperature of hot pressing (650o C), was also characterized by elastic-plastic behavior (similar to flow softening described above), with immediate yield drop after yielding and resulted in a fairly large amount of plasticity of about 17% before unloading. The bulk density was found to be increased only by 2%. Another very interesting experimental finding from the present investigation is the time-dependent deformation (viz., creep densification) exhibited by this glass. It was established from the result of longer term creep experiment at 850o C that the glass revealed large uniaxial compression of about 15% with 5.5% densification to a density of 3.02 g cm-3. Strain rate sensitivity of the A15Y glass was revealed by another stress jump test. To summarize, the present thesis elucidates the discovery of a new class of ceramics with unusual physical properties in an amorphous mixture of Al2O3-Y2O3, which is in contrast to the conventional brittle ceramics. This new class of ceramics deforms plastically without any hydrostatic containment, like ductile metal, at temperatures about 1000o C below those at which their crystalline counterpart would deform. The behavior of this amorphous ceramics under stress that leads to unusually large change in shape, density, hardness and modulus with hierarchies of amorphous structures is demonstrated in detail with experimental evidence.
15

Pressureless Infiltration Of Al-Mg Based Alloys Into Al2O3 Preforms

Rao, B Srinivasa 12 1900 (has links) (PDF)
No description available.
16

Radiation Hardness of 4H-SiC Devices and Circuits

Suvanam, Sethu Saveda January 2017 (has links)
Advances in space and nuclear technologies are limited by the capabilities of the conventional silicon (Si) electronics. Hence, there is a need to explore materials beyond Si with enhanced properties to operate in extreme environments. In this regards, silicon carbide (4H-SiC), a wide bandgap semiconductor, provides suitable solutions. In this thesis, radiation effects of 4H-SiC bipolar devices, circuits and dielectrics for SiC are investigated under various radiation types. We have demonstrated for the first time the radiation hardness of 4H-SiC logic circuits exposed to extremely high doses (332 Mrad) of gamma radiation and protons. Comparisons with previously available literature show that our 4H-SiC bipolar junction transistor (BJT) is 2 orders of magnitude more tolerant under gamma radiation to existing Si-technology. 4H-SiC devices and circuits irradiated with 3 MeV protons show about one order of magnitude higher tolerance in comparison to Si. Numerical simulations of the device showed that the ionization is most influential in the degradation process by introducing interface states and oxide charges that lower the current gain. Due to the gain reduction of the BJT, the voltage reference of the logic circuit has been affected and this, in turn, degrades the voltage transfer characteristics of the OR-NOR gates. One of the key advantages of 4H-SiC over other wide bandgap materials is the possibility to thermally grow silicon oxide (SiO2) and process device in line with advanced silicon technology. However, there are still questions about the reliability of SiC/SiO2 interface under high power, high temperature and radiation rich environments. In this regard, aluminium oxide (Al2O3), a chemically and thermally stable dielectric, has been investigated. It has been shown that the surface cleaning treatment prior to deposition of a dielectric layer together with the post dielectric annealing has a crucial effect on interface and oxide quality. We have demonstrated a new method to evaluate the interface between dielectric/4H-SiC utilizing an optical free carrier absorption technique to quantitative measure the charge carrier trapping dynamics. The radiation hardness of Al2O3/4H-SiC is demonstrated and the data suggests that Al2O3 is better choice of dielectric for devices in radiation rich applications. / <p>QC 20170119</p>
17

Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

Song, Xiaowei, Fagiani, Matias R., Gewinner, Sandy, Schöllkopf, Wieland, Asmis, Knut Roger, Bischoff, Florian A., Berger, Fabian, Sauer, Joachim 22 May 2018 (has links)
We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4 − and Al2O3-6 − are measured in the region from 400 to 1200 cm−1. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6 − anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3 −. Terminal Al–O stretching modes are found between 1140 and 960 cm−1. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm−1) and lower energies (850-570 cm−1), respectively. Four modes in-between 910 and 530 cm−1 represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O)2–Al ring.
18

Cylindrical Magnetic Nanowires Towards Three Dimensional Data Storage

Mohammed, Hanan 12 1900 (has links)
The past few decades have witnessed a race towards developing smaller, faster, cheaper and ultra high capacity data storage technologies. In particular, this race has been accelerated due to the emergence of the internet, consumer electronics, big data, cloud based storage and computing technologies. The enormous increase in data is paving the path to a data capacity gap wherein more data than can be stored is generated and existing storage technologies would be unable to bridge this data gap. A novel approach could be to shift away from current two dimensional architectures and onto three dimensional architectures wherein data can be stored vertically aligned on a substrate, thereby decreasing the device footprint. This thesis explores a data storage concept based on vertically aligned cylindrical magnetic nanowires which are promising candidates due to their low fabrication cost, lack of moving parts as well as predicted high operational speed. In the proposed concept, data is stored in magnetic nanowires in the form of magnetic domains or bits which can be moved along the nanowire to write/read heads situated at the bottom/top of the nanowire using spin polarized current. Cylindrical nanowires generally exhibit a single magnetic domain state i.e. a single bit, thus for these cylindrical nanowire to exhibit high density data storage, it is crucial to pack multiple domains within a nanowire. This dissertation demonstrates that by introducing compositional variation i.e. multiple segments along the nanowire, using materials with differing values of magnetization such as cobalt and nickel, it is possible to incorporate multiple domains in a nanowire. Since the fabrication of cylindrical nanowires is a batch process, examining the properties of a single nanowire is a challenging task. This dissertation deals with the fabrication, characterization and manipulation of magnetic domains in individual nanowires. The various properties of are investigated using electrical measurements, magnetic microscopy techniques and micromagnetic simulations. In addition to packing multiple domains in a cylindrical nanowire, this dissertation reports the current assisted motion of domain walls along multisegmented Co/Ni nanowires, which is a fundamental step towards achieving a high density cylindrical nanowire-based data storage device.
19

Forêt de nanofils semiconducteurs pour la thermoélectricité / Forest of semiconducting nanowires for thermoelectricity

Singhal, Dhruv 20 May 2019 (has links)
La conversion thermoélectrique a suscité un regain d'intérêt en raison des possibilités d'augmenter l'efficacité tout en exploitant les effets de taille. Par exemple, les nanofils montrent théoriquement une augmentation des facteurs de puissance ainsi qu'une réduction du transport des phonons en raison d'effets de confinement et/ou de taille. Dans ce contexte, le diamètre des nanofils devient un paramètre crucial à prendre en compte pour obtenir des rendements thermoélectriques élevés. Une approche habituelle consiste à réduire la conductivité thermique phononique dans les nanofils en améliorant la diffusion sur les surfaces tout en réduisant les diamètres.Dans ce travail, la caractérisation thermique d'une forêt dense de nanofils de silicium, germanium, silicium-germanium et alliage Bi2Te3 est réalisée par une méthode 3-omega très sensible. Ces forêts de nanofils pour le silicium, le germanium et les alliages silicium-germanium ont été fabriqués selon une technique "bottom-up" suivant le mécanisme Vapeur-Liquide-Solide en dépôt chimique en phase vapeur. La croissance assistée par matrice et la croissance par catalyseurs en or des nanofils à diamètres contrôlés ont été réalisés à l'aide d'alumine nanoporeuse comme matrice. Les nanofils sont fabriqués selon la géométrie interne des nanopores, dans ce cas le profil de surface des nanofils peut être modifié en fonction de la géométrie des nanopores. Profitant de ce fait, la croissance à haute densité de nanofils modulés en diamètre a également été démontrée, où l'amplitude et la période de modulation peuvent être facilement contrôlées pendant la fabrication des matrices. Même en modulant les diamètres pendant la croissance, les nanofils ont été structurellement caractérisés comme étant monocristallins par microscopie électronique à transmission et analyse par diffraction des rayons X.La caractérisation thermique de ces nanofils a révélé une forte diminution de la conductivité thermique en fonction du diamètre, dont la réduction était principalement liée à une forte diffusion par les surfaces. La contribution du libre parcours moyen à la conductivité thermique observée dans ces matériaux "bulk" varie beaucoup, Bi2Te3 ayant une distribution en libre parcours moyen (0,1 nm à 15 nm) très faible par rapport aux autres matériaux. Même alors, des conductivités thermiques réduites (~40%) ont été observées dans ces alliages attribuées à la diffusion par les surfaces et par les impuretés. D'autre part, le silicium et le germanium ont une conductivité thermique plus élevée avec une plus grande distribution de libre parcours moyen. Dans ces nanofils, une réduction significative (facteur 10 à 15 ) a été observée avec une forte dépendance avec la taille des nanofils.Alors que les effets de taille réduisent la conductivité thermique par une meilleure diffusion sur les surfaces, le dopage de ces nanofils peut ajouter un mécanisme de diffusion par différence de masse à des échelles de longueur atomique. La dépendance en température de la conductivité thermique a été déterminée pour les nanofils dopés de silicium afin d'observer une réduction de la conductivité thermique à une valeur de 4,6 W.m-1K-1 dans des nanofils de silicium fortement dopés avec un diamètre de 38 nm. En tenant compte de la conductivité électrique et du coefficient Seebeck calculé, on a observé un ZT de 0,5. Avec l'augmentation significative de l'efficacité du silicium en tant que matériau thermoélectrique, une application pratique réelle sur les appareils n'est pas loin de la réalité. / Thermoelectric conversion has gained renewed interest based on the possibilities of increasing the efficiencies while exploiting the size effects. For instance, nanowires theoretically show increased power factors along with reduced phonon transport owing to confinement and/or size effects. In this context, the diameter of the nanowires becomes a crucial parameter to address in order to obtain high thermoelectric efficiencies. A usual approach is directed towards reducing the phononic thermal conductivity in nanowires by achieving enhanced boundary scattering while reducing diameters.In this work, thermal characterisation of a dense forest of silicon, germanium, silicon-germanium and Bi2Te3 alloy nanowires is done through a sensitive 3ω method. These forest of nanowires for silicon, germanium and silicon-germanium alloy were grown through bottom-up technique following the Vapour-Liquid-Solid mechanism in Chemical vapour deposition. The template-assisted and gold catalyst growth of nanowires with controlled diameters was achieved with the aid of tuneable nanoporous alumina as templates. The nanowires are grown following the internal geometry of the nanopores, in such a case the surface profile of the nanowires can be modified according to the fabricated geometry of nanopores. Benefiting from this fact, high-density growth of diameter-modulated nanowires was also demonstrated, where the amplitude and the period of modulation can be easily tuned during the fabrication of the templates. Even while modulating the diameters during growth, the nanowires were structurally characterised to be monocrystalline through transmission electron microscopy and X-ray diffraction analysis.The thermal characterisation of these nanowires revealed a strong diameter dependent decrease in the thermal conductivity, where the reduction was predominantly linked to strong boundary scattering. The mean free path contribution to the thermal conductivity observed in the bulk of fabricated nanowire materials vary a lot, where Bi2Te3 has strikingly low mean free path distribution (0.1 nm to 15 nm) as compared to the other materials. Even then, reduced thermal conductivities (~40%) were observed in these alloys attributed to boundary and impurity scattering. On the other hand, silicon and germanium have higher thermal conductivity with a larger mean free path distribution. In these nanowires, a significant reduction (10-15 times) was observed with a strong dependence on the size of the nanowires.While size effects reduce the thermal conductivity by enhanced boundary scattering, doping these nanowires can incorporate mass-difference scattering at atomic length scales. The temperature dependence of thermal conductivity was determined for doped nanowires of silicon to observe a reduction in thermal conductivity to a value of 4.6 W.m-1K-1 in highly n-doped silicon nanowires with 38 nm diameter. Taking into account the electrical conductivity and calculated Seebeck coefficient, a ZT of 0.5 was observed. With these significant increase in the efficiency of silicon as a thermoelectric material, a real practical application to devices is not far from reality.
20

Nano-porous Alumina, a Potential Bone Implant Coating

Karlsson, Marjam January 2004 (has links)
<p>This thesis describes a method of growing a highly adherent nano-porous alumina coating on titanium implant materials, a design which might be useful in hard tissue replacement. Alumina layers were formed by anodisation of aluminium, which had been deposited on titanium and titanium alloys by electron beam evaporation. Mechanical testing showed the coatings’ shear and tensile strength to be ~20MPa and ~10MPa respectively. </p><p>Human osteoblasts were cultured on purchased membranes, produced in the same way with similar characteristics as the coating mentioned above. Cell viability, proliferation and phenotype were assessed by measuring redox reactions, DNA, tritiated thymidine incorporation and alkaline phosphatase production. Results showed normal osteoblastic growth patterns with increasing cell numbers the first two weeks after which cell growth decreased and alkaline phosphatase production increased, indicating that osteoblastic phenotype was retained on the alumina. Flattened cell morphology with filipodia attached to the pores of the material was seen. </p><p>Implants frequently trigger inflammatory responses due to accumulation and activation of cells such as polymorphonuclear granulocytes (PMN), also called neutrophils. Activation and morphology of human PMN in response to nano-porous alumina with two pore sizes (20 and 200 nm) was investigated by luminol-amplified chemiluminescence, granule enzyme deposition measurement, optical and scanning electron microscopy. Activation was observed on both membrane types, however less pronounced on the 200 nm alumina. For both membranes a decrease in activation was seen after coating with fibrinogen, collagen I and serum (more pronounced for the two latter). On fibrinogen-coated alumina many flattened cells were observed, indicating frustrated phagocytosis. Finally when culturing osteoblasts on non-coated and collagen-coated membranes (after exposure to PMN) many more cells had established on the protein-coated surface after 24 h. </p><p>The overall results indicate that it might be possible to produce a novel bone implant coating by anodisation of aluminium deposited on titanium and that this material will support osteoblast adhesion and proliferation. Furthermore neutrophil activation can be suppressed when coating the alumina with collagen I, which is beneficial considering the fact that this protein also is essential for bone formation.</p>

Page generated in 0.0231 seconds