• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 45
  • 36
  • Tagged with
  • 237
  • 237
  • 80
  • 80
  • 80
  • 72
  • 52
  • 43
  • 36
  • 22
  • 21
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Annual Report 2008 - Institute of Radiochemistry

Viehweger, K., Richter, A., Foerstendorf, H. 31 March 2010 (has links) (PDF)
No description available.
2

Annual Report 2008 - Institute of Radiochemistry

Viehweger, K., Richter, A., Foerstendorf, H. January 2009 (has links)
No description available.
3

Pulse-Sequence Approaches for Multidimensional Electronic Spectroscopy of Ultrafast Photochemistry / Pulssequenzmethoden zur multidimensionalen elektronischen Spektroskopie ultraschneller Photochemie

Rützel, Stefan January 2014 (has links) (PDF)
Observing chemical reactions in real time with femtosecond laser pulses has evolved into a very popular � field of research since it provides fascinating insights into the nature of photochemical transformations. Nevertheless, many photochemical reactions are still too complex for which reason the underlying mechanisms and all engaged species cannot be identi� fied thoroughly. In these cases, conventional time-resolved spectroscopy techniques reach their technical limits and advanced approaches are required to follow the conversion of reactants to their products including all reaction intermediates. The aim of this work was therefore the development of novel methods for ultrafast spectroscopy of photoreactive systems. Though the concept of coherent multidimensional spectroscopy has so far exclusively been used to explore photophysical phenomena, it also offers great potential for the study of photochemical processes due to its capability of extracting spectroscopic information along several frequency dimensions. This allows resolving the photochemical connectivity between various interconvertible molecular species with ultrafast temporal resolution on the basis of their absorption and emission properties as the spectral correlations are explicitly visualized in the detected spectra. The ring-open merocyanine form of the photochromic compound 6-nitro BIPS was studied in Chap. 4 of this work. Merocyanines and their associated ring-closed spiropyrans are promising candidates for future applications as, for instance, molecular electronics or optical data storage due to their unique property of being switchable between two stable con� gurations via light illumination. Transient absorption with sub-50 fs temporal resolution and broadband probing was employed to characterize the photodynamics of this system with variable excitation wavelengths. Using global data analysis, it could be inferred that two different merocyanine isomers with differing excited-state lifetimes exist in solution. These isomers differ in the cis/trans con� guration in the last bond of the methine bridge. The minority of isomers exist in the all-trans con� guration (TTT) while the isomer with a cis con� guration of the third dihedral angle (TTC) is dominant. A characteristic band, detected after long pump-probe delays, was attributed to the unidirectional cis->trans photoisomerization reaction of the TTC to the TTT form. The quantum yield of the reaction was estimated to be (18� +-4) %. In addition, pronounced coherent vibrational wave-packet oscillations were observed and it was concluded that these signatures are related to the product formation. Coherent two-dimensional electronic spectroscopy was successfully implemented using a partially collinear pump-probe beam geometry in combination with a femtosecond pulse shaper. The use of a whitelight probe continuum enabled us to probe contributions far-off the diagonal over the complete visible range. By properly adjusting the relative phase between the � first two laser pulses with the pulse shaper, the principle of phase-cycling was explained and it was demonstrated that the measurement can be carried out in the so-called "rotating frame" in which the observed frequencies detected during the coherence time are shifted to lower values. It was shown that these concepts allow the extraction of the desired background-free photon echo while the amount of necessary data points is highly reduced. In order to put our proposal of multidimensional spectroscopy of photoreactive systems into practice, third-order two- and three-dimensional spectroscopy was then employed for an in-depth analysis of a photoreactive process, in which the photoisomerization of 6-nitro BIPS served as a model system. The measured two-dimensional spectra revealed the cis->trans photoisomerization after long population times. By collecting a large data set of two-dimensional spectra for short population times and by applying a Fourier transform along the population time axis, the third-order three-dimensional spectrum was obtained. The novelty of this approach compared to coherent two-dimensional spectroscopy is the introduction of a third axis associated with the vibrational frequencies of the molecular system. In this way, the formation of the reaction product was evidenced and it was shown that the product is formed in its fi� rst excited singlet state within 200 fs after excitation. This method hence visualizes the photochemical connections between different reactive molecular species in an intuitive manner and further exposes the normal modes connecting reactant and product. Such conclusions cannot be drawn with conventional third-order techniques such as transient absorption since they are not capable of capturing the full third-order response, but only a subset of it. The reaction mechanism and the role of the observed vibrational modes were uncovered by comparing the experimental data with the results of high-level quantum-chemical calculations performed by our collaborators in the group of Prof. B. Engels from the theoretical chemistry department at the University of Würzburg. Specifi� c calculated molecular normal modes could be assigned to the experimentally observed vibrational frequencies and potential energy surfaces of the electronic ground state and of the � first excited state were computed. The technique implemented in this chapter is general and is applicable for the time-resolved analysis of a wide range of chemical reaction networks. In the fi� rst part of Chap. 5, coherent two-dimensional spectroscopy was employed to track the reaction paths of the related 6,8-dinitro BIPS after S1 excitation. Several differences to the photochemical properties of 6-nitro BIPS were found. From the 2D spectra, the cis-trans isomerization between the two merocyanine isomers could be excluded as a major reaction path for this compound. To explore the dynamics after reexcitation to higher-lying electronic states, pump-repump-probe spectroscopy was implemented and the formation of a new species, a radical cation, was observed. To identify the precursor isomer, triggered-exchange two-dimensional spectroscopy, a � fifth-order technique previously only available in the infrared regime for vibrational transitions, was implemented for the fi� rst time for electronic excitations in the visible. This approach combines the properties of the pump-repump-probe technique with the potential of coherent two-dimensional spectroscopy. It correlates the absorption frequency of a reactive molecular species with the emission signatures of the product formed from this species after an additional absorption of a photon. Using this method, it was unambiguously proven that only the TTC isomer reacts to the radical cation thus forming the precursor species of the reaction. Electronic triggered-exchange two-dimensional spectroscopy is hence another improved technology for time-resolved spectroscopy with applications in the study of multistep photoreactions and higher-lying electronic states. While in the two preceding chapters third- and � fifth-order experiments were discussed that neglect the vectorial character of light-matter interactions, Chap. 6 focused on a novel theoretical formalism enabling the description of light fi� elds optimized for polarization-sensitive higher-order nonlinearities. This formalism is based on the von Neumann time-frequency representation of shaped femtosecond laser pulses which permits the defi� nition of multipulse sequences on a discrete time-frequency lattice. Hence, not only the temporal spacing between subpulses is adjustable, but also the center frequencies may be adapted such that they � fit the experimental requirements. This method was generalized to the description of pulse sequences with time-varying polarization states. It was shown that by using this description, the polarization ellipticity, orientation angle, relative phase and intensity, and the time-frequency location of each subpulse is explicitly controllable. The accuracy of the transformations from Fourier space to von Neumann domain and vice versa was demonstrated. Moreover, a strict accordance between the von Neumann polarization parameters with the conventional parameters in time domain was found for well separated subpulses. A potential future application of this approach is polarization-sensitive multidimensional spectroscopy in which hidden cross peaks may be isolated by de� fining the pulses in the von Neumann picture with suitable polarization sequences. This method could also be used in quantum control experiments in which the polarization of the light fi� eld is used as a major control knob. This thesis summarizes our efforts to open the � field of femtochemistry to the concept of coherent multidimensional electronic spectroscopy. Making use of femtosecond pulse shaping, sub-50 fs temporal resolution, broadband spectral probing, higher-order nonlinearities, and new types of laser pulse descriptions, the presented methods might stimulate further future advancements in this research area. / Mit Hilfe von Femtosekundenlaserpulsen lassen sich chemische Reaktionen in Echtzeit beobachten, was sich zu einem äußerst populären Forschungsgebiet entwickelt hat, welches faszinierende neue Einblicke in die Natur von photochemischen Transformationen ermöglicht. Nichtdestotrotz sind nach wie vor viele photochemische Reaktionen zu komplex, um die zugrunde liegenden Mechanismen entschlüsseln und alle beteiligten Spezies einwandfrei identifizieren zu können. In diesen Fällen stoßen die konventionellen zeitaufgelösten Techniken an ihre Grenzen, sodass verbesserte Ansätze notwendig sind um der Konversion der Edukte zu den Produkten mit allen reaktiven Zwischenprodukten in Gänze folgen zu können. Das Ziel der vorliegenden Arbeit war deshalb die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie photoreaktiver Systeme. Obwohl das Konzept der kohärenten multidimensionalen Spektroskopie bisher ausschließlich zur Erforschung photophysikalischer Phänomene eigesetzt wurde, birgt es angesichts seiner Fähigkeit, spektroskopische Informationen entlang mehrerer Frequenzachsen zu extrahieren, auch großes Potenzial für die Untersuchung photochemischer Prozesse. Diese Eigenschaft ermöglicht die Auflösung des photochemischen Austauschs zwischen untereinander verknüpften molekularen Spezies durch ihre Emissions- und Absorptionseigenschaften, da die spektralen Korrelationen in den gemessenen Spektren unmittelbar visualisiert werden. In Kap. 4 dieser Arbeit wurde die ringgeöffnete Merocyaninform der photochromen Verbindung 6-nitro BIPS untersucht. Aufgrund ihrer besonderen Eigenschaft, durch Lichteinstrahlung zwischen zwei stabilen Konfigurationen umschalten zu können, sind Merocyanine und ihre assoziierten ringgeschlossenen Spiropyrane vielversprechende Kandidaten für zukünftige Anwendungen auf dem Gebiet der molekularen Elektronik und der optischen Datenspeicherung. Die Photodynamiken dieses Systems wurden mit Hilfe der transienten Absorptionstechnik mit einer zeitlichen Auflösung von unter 50 fs und spektral breitbandiger Abfrage charakterisiert. Die globale Datenanalyse ergab hierbei, dass in Lösung zwei unterschiedliche Merocyaninisomere mit unterschiedlichen Lebensdauern der angeregten Zustände vorliegen. Diese Isomere unterscheiden sich in der cis/trans-Anordnung der letzten Bindung der Methinbrücke. Hierbei stellt das Isomer mit trans-trans-trans Konfiguration (TTT) die Minderheit dar, während die Mehrzahl der Moleküle eine cis-Stellung im dritten Diederwinkel aufweist (TTC). Eine charakteristische spektrale Bande, welche nach langen Pump-Probe-Verzögerungszeiten detektiert wurde, konnte der einfachgerichteten cis->trans Photoisomerisierungsreaktion der TTC Form zum TTT zugeordnet werden. Die Quantenausbeute dieser Reaktion wurde auf (18+-4) % bestimmt. Darüber hinaus wurden stark ausgeprägte Oszillationen eines kohärenten Vibrationswellenpakets beobachtet wobei geschlussfolgert wurde, dass diese Signaturen mit der Entstehung des Reaktionsprodukts zusammenhängen. Die Technik der kohärenten zweidimensionalen elektronischen Spektroskopie wurde auf Basis einer partiell kollinearen Pump-Probe Strahlgeometrie und in Kombination mit einem Femtosekundenpulsformer erfolgreich implementiert. Dabei ermöglichte die Verwendung eines Weißlichtkontinuums als Abfragepuls auch die Erfassung von Beiträgen, welche weit entfernt von der Diagonalen lokalisiert sind und sich über den gesamten sichtbaren Spektralbereich erstrecken. Durch eine geeignete Anpassung der relativen Phase zwischen den ersten beiden Laserpulsen mit Hilfe des Pulsformers konnte das Prinzip des „phase cyclings" umgesetzt werden. Darüber hinaus wurde demonstriert, dass die Messung im sogenannten „rotating frame" durchgeführt werden kann wobei die Oszillationsfrequenzen, welche während der Kohärenzzeit detektiert werden, zu niedrigeren Werten verschoben werden. Es wurde gezeigt, dass mit diesen Konzepten das erwünschte hintergrundfreie Photonenecho extrahiert und darüber hinaus das Signal mit einer deutlich niedrigeren Anzahl an notwendigen Datenpunkten erfasst werden kann. Um unsere Idee der multidimensionalen Spektroskopie an photoreaktiven Systemen in die Praxis umzusetzen, wurde anschließend die zwei- und dreidimensionale Spektroskopie dritter Ordnung zur eingehenden Untersuchung eines photoreaktiven Prozesses angewandt, wobei die Photoisomerisierungsreaktion von 6-nitro BIPS als Modellreaktion herangezogen wurde. Die gemessenen zweidimensionalen Spektren offenbarten unmittelbar die cis->trans Photoisomerisierung nach längeren Populationszeiten. Das dreidimensionale Spektrum dritter Ordnung konnte generiert werden, indem ein großer Datensatz an zweidimensionalen Spektren für kleine Populationszeiten aufgenommen und anschließend die Fouriertransformation entlang der Populationszeitachse bestimmt wurde. Die Neuartigkeit dieses Verfahrens besteht darin, dass eine dritte Achse eingeführt wird, welche mit der Schwingungsfrequenz des molekularen Systems assoziiert ist. Dadurch konnte die Entstehung des Reaktionsprodukts eindeutig belegt werden. Außerdem konnte so gezeigt werden, dass es innerhalb von 200 fs im ersten angeregten Singulettzustand erzeugt wird. Somit vermag diese Methode einerseits die photochemischen Beziehungen zwischen unterschiedlichen reaktiven Spezies auf intuitive Art und Weise zu visualisieren und andererseits ermöglicht sie die Enthüllung derjenigen Normalschwingungen, welche Edukt und Produkt miteinander verbinden. Derartige Schlussfolgerungen können nicht mit konventionellen Techniken dritter Ordnung, wie beispielsweise der transienten Absorption, gezogen werden, da sie nicht in der Lage sind die vollständige Antwortfunktion dritter Ordnung, sondern lediglich ein Teil davon, zu erfassen. Durch Abgleich der experimentellen Daten mit den Resultaten von umfassenden quantenchemischen Berechnungen unserer Kollaborationspartner der Gruppe von Prof. B. Engels aus dem Fachbereich der theoretischen Chemie der Universität Würzburg, konnten der Reaktionsmechanismus sowie die Rolle der beobachteten Vibrationsmoden entschlüsselt werden. Dabei konnten spezifische berechnete Normalschwingungen den experimentell beobachteten Frequenzen zugeordnet und die Potentialhyperflächen des elektronischen Grundzustands und des ersten angeregten Zustands bestimmt werden. Die Technik, welche in diesem Kapitel eingesetzt wurde, ist universell und zur zeitaufgelösten Untersuchung einer großen Zahl an chemischen Reaktionsnetzwerken anwendbar. Im ersten Teil von Kap. 5 wurden die Reaktionspfade der sehr ähnlichen Verbindung 6,8-dinitro BIPS nach S1-Anregung mittels kohärenter zweidimensionaler Spektroskopie untersucht. Dabei zeigten sich zahlreiche Unterschiede zu den photochemischen Eigenschaften von 6-nitro BIPS. Auf Basis der 2D Spektren konnte für diese Verbindung die cis-trans Isomerisierung zwischen den beiden Merocyaninisomeren als bedeutender Reaktionspfad ausgeschlossen werden. Zur Erforschung der Dynamik nach der Wiederanregung in höher angeregte elektronische Zustände, wurde die Anrege-Wiederanrege-Abfrage Spektroskopie implementiert, wobei die Bildung einer neuen Spezies – des Radikalkations – beobachtet wurde. Zur Identifikation des Vorläuferisomers wurde die Technik der zweidimensionalen Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D", TE2D) erstmals mit elektronischen Anregungen im Sichtbaren realisiert. Bisher stand diese Technik ausschließlich im infraroten Spektralbereich für Vibrationsübergänge zur Verfügung. Diese Methode vereinigt die Eigenschaften der Anrege-Wiederanrege-Abfrage Technik mit dem Leistungsvermögen der kohärenten zweidimensionalen Spektroskopie. Sie stellt die Korrelation zwischen der Absorptionsfrequenz einer reaktiven molekularen Spezies mit der Emissionssignatur eines Produkts dar, welches von der ersten Spezies durch die zusätzliche Absorption eines weiteren Photons erzeugt wurde. Durch die Zuhilfenahme dieser Methode konnte eindeutig gezeigt werden, dass nur das TTC Isomer zum Radikalkation reagiert, weshalb es somit als Vorläuferisomer der Reaktion aufgefasst werde kann. Die elektronische TE2D Spektroskopie stellt somit eine weitere verbesserte Technologie in der zeitaufgelösten Spektroskopie mit möglichen Anwendungen bei der Untersuchung von mehrstufigen Photoreaktionen und höher angeregten elektronischen Zuständen dar. Während in den beiden vorhergehenden Kapiteln Experimente dritter und fünfter Ordnung unter Vernachlässigung des vektoriellen Charakters von Licht-Materie-Wechselwirkungen diskutiert wurden, befasste sich Kap. 6 mit einem neuartigen theoretischen Formalismus, welcher die Beschreibung von Lichtfeldern ermöglicht, welche für polarisationssensitive Nichtlinearitäten höherer Ordnung optimiert sind. Dieser Formalismus basiert auf der von Neumann Zeit-Frequenz Darstellung von geformten Laserpulsen, welche es gestattet, Mehrfachpulssequenzen auf einem diskreten Zeit-Frequenz Gitter zu definieren. Somit kann nicht nur der zeitliche Abstand zwischen den Teilpulsen eingestellt, sondern auch die Zentralfrequenz derart angepasst werden, dass sie den experimentellen Ansprüchen gerecht wird. Diese Methode wurde für die Beschreibung von Pulsformen mit einem zeitabhängigen Polarisationsprofil verallgemeinert. Es wurde gezeigt, dass mit Hilfe dieser Darstellung die Elliptizität, der Orientierungswinkel, die relative Phase und Intensität der Polarisationsellipse, sowie die Zeit-Frequenz Position jedes einzelnen Teilpulses explizit kontrolliert werden können. Die Genauigkeit der Transformationen vom Fourier- in den von Neumann Raum und wieder zurück wurde demonstriert. Überdies wurde festgestellt, dass im Falle von deutlich getrennten Teilpulsen die von Neumann Parameter exakt mit den konventionellen Polarisationsparametern im Zeitraum übereinstimmen. Eine der möglichen zukünftigen Anwendungen dieser Methode ist die polarisationssensitive multidimensionale Spektroskopie, mit deren Hilfe verborgene Cross Peaks durch die Definition der Pulssequenz in der von Neumann Darstellung unter Verwendung geeigneter Polarisationsabfolgen isoliert werden können. Dieser Formalismus könnte außerdem bei Quantenkontrollexperimenten Anwendung finden, bei denen die Polarisation des Lichtfelds der entscheidende Kontrollparameter darstellt. Diese Dissertation fasst unsere Bemühungen zusammen, das Feld der Femtochemie auch für das Konzept der multidimensionalen Spektroskopie zu eröffnen. Durch die Verwendung der Femtosekundenpulsformung, einer zeitlichen Auflösung von unter 50 fs, spektral breitbandiger Abfrage, Nichtlinearitäten höherer Ordnung sowie das Ausnutzen neuartiger Beschreibungen von Laserpulsen könnten die präsentierten Methoden Anreize für weitere zukünftige Entwicklungen auf diesem Forschungsgebiet schaffen.
4

Einfluss von Dispergierungsmethode und Rohmaterialaufreinigung auf die Beschaffenheit einwandiger Kohlenstoffnanorohrsuspensionen / Influence of dispersion technique and raw material purification on the properties of single-wall carbon nanotube suspensions

Hefner, Timo January 2014 (has links) (PDF)
In der vorliegenden Dissertation wurden Dispergierungseffizienz, Entbündelungseffizienz und Röhrenqualität von SWNT-Suspensionen untersucht. Die Röhrenqualität wurde durch Messung von Quantenausbeuten bewertet. Außerdem wurden Suspensionen von den drei verschiedenen Rohmaterialien CoMoCAT, Black Sand und HiPCO, hergestellt durch die Behandlung mit Ultraschall und Schermischen, verglichen. Beim Beschallen zeigte sich wie erwartet eine höhere Dispergierungseffizienz im Vergleich zum Schermischen. Diese war jeweils bei Black Sand am größten, gefolgt von CoMoCAT und HiPCO. Ein Vergleich zwischen zwei HiPCO-Materialien bestätigte die deutlichen Effizienzvorteile nicht aufgereinigter Materialien. Trotz der viel geringeren Dichte des aufgereinigten HiPCO-Materials, ließ sich dieses durch das Schermischen wesentlich schlechter dispergieren. Der Effizienzunterschied war jedoch geringer als bei Black Sand und CoMoCAT, was vermutlich auf den geringeren Unterschied der Kohlenstoffanteile zurückzuführen ist. Dieser wiederum hängt von den jeweiligen Herstellungs- und Aufreinigungsverfahren ab. Die Dispergierungsgeschwindigkeit war für gescherte Black Sand- und CoMoCAT-Proben zu Beginn der Dispergierung höher als für die jeweils beschallten Proben, weshalb durch Kombination der beiden Methoden möglicherweise eine Verbesserung der präparierten Suspensionen bezüglich der drei untersuchten Parameter erreicht werden kann. Der Vergleich der Entbündelungseffizienzen ergab erneut Vorteile beim Ultraschall gegenüber dem Schermischen. Die beschallten Black Sand- und HiPCO-Proben zeigten hierbei noch eine deutlich effizientere Auftrennung als die Proben des aufgereinigten CoMoCAT-Materials. Dieses enthält zu jedem Zeitpunkt der Beschallung noch einen entsprechend größeren Anteil an aggregierten Röhren. Beim Schermischen funktionierte die Entbündelung von Black Sand im Vergleich zu CoMoCAT und HiPCO mit Abstand am besten, was sich auch in den ODVerhältnissen beschallter und gescherter Proben widerspiegelte. Die beobachtete Quantenausbeute war bei den durch Schermischen dispergierten DGUEinzelrohrproben um bis zu 50 % höher als bei den beschallten Proben, was auf eine deutlich niedrigere Röhrenbeschädigung und somit auch auf eine höhere Röhrenqualität hindeutete. Dies wurde auch durch Vergleichsmessungen an Einzelröhren bestätigt. Außerdem dringt bei durch Ultraschall geschnittenen Röhren Wasser ins Röhreninnere ein, was beim Schermischen nicht der Fall ist. Das ermöglicht durch Schermischen vielleicht die Herstellung von Proben mit veränderten Eigenschaften. Beim Vergleich der Materialien zeigte HiPCO die höchste Quantenausbeute. Dieses Herstellungsverfahren liefert also im Vergleich zum CoMoCAT-Verfahren eine bessere Röhrenqualität. Die um 70 % höheren Quantenausbeuten der Black Sand-Proben im Vergleich zu den CoMoCAT-Proben machten die Röhrenbeschädigungen bei der Aufreinigung des Rohmaterials deutlich. Werden zudem Beschädigungen durch Ultraschall berücksichtigt, beträgt der Unterschied sogar 250 %. Die beschallten HiPCO- und Black Sand-Proben der zeitabhängigen Messungen zeigten aufgrund der effizienten Entbündelung den schnellsten Anstieg der uantenausbeuten, welche aufgrund von Beschädigungen durch den Ultraschall, beeinflusst durch die Entbündelungsund Dispergierungseffizienzen der Materialien, nach 10-20 min wieder abfielen. Die Quantenausbeuten der gescherten Proben stiegen entsprechend langsamer über die gesamte Messzeit von sechs Stunden an. Die Dispergierung mittels Schermischer bei erhöhter Viskosität führte bei einem Iodixanolanteil von 45 % zu einer fast sechsfach höheren Dispergierungseffizienz im Vergleich zu Wasser. Auch Lufteinschlüsse scheinen einen Einfluss zu haben, weshalb ein Probenvolumen zwischen 13-14 mL mit dem verwendeten Aufbau am sinnvollsten erscheint. Ob Viskosität und Lufteinschlüsse auch Entbündelungseffizienz und Röhrenqualität beeinflussen, muss noch untersucht werden. In Kapitel 5 wurde die Dispergierung von Nanoröhren mit kationischem Perylenbisimid untersucht. Nach dem Zusammengeben von PBI-Lösung und SDS-Nanorohrsuspension wurden Flokkulationseffekte beobachtet, welche durch hohe Nanorohr- oder SDS-Konzentrationen verzögert wurden. Das ermöglichte die Herstellung von PBI-Nanorohrfilmen mit Streifenmuster durch Nutzung des Kaffeering-Effektes. Es wurde gezeigt, dass die Nanoröhren in das PBI eingebettet werden können. Allerdings waren die Streifen noch sehr unregelmäßig und die Röhren in den Streifen nicht ausgerichtet. Die Stabilität der PBI-Nanorohrsuspensionen konnte durch einen Tensidaustausch vom anionischen SDS zum kationischen CTAB verbessert werden. Es konnte gezeigt werden, dass für die Vermeidung von Aggregationen während den dafür nötigen Dialysen unter anderem die möglichst geringe Bewegung der Probe entscheidend ist. Außerdem musste die CTABKrafft-Temperatur von 25 °C berücksichtigt werden. Unterhalb dieser Temperatur bildet das Tensid keine Mizellen mehr, was die Suspensionen destabilisiert. Mischexperimente von CTAB-Nanorohrsuspensionen mit Lösungen aus verschiedenen CTAB:PBI-Verhältnissen lieferten Hinweise darauf, dass CTAB alleine die Röhren nicht stabilisiern kann. Ein Grund dafür könnte eine zu geringe Anzahl an positiven Ladungen auf den Röhren sein. Demzufolge wäre immer ein gewisser Anteil an Tensid zur Stabilisierung notwendig. Trotz geringer Tensidbeimischung könnten aber Filme mit in PBI eingebetteten Röhren hergestellt werden. Unter Umständen könnten die Röhren auch in die flüssigkristalline Phase des PBIs eingebettet werden. Ein anderer Grund für die nicht ausreichende Stabilisierung könnte sein, dass die PBI-Aggregate nur sehr schlecht aufgetrennt werden. Dann könnte das PBI-Adsorptionsverhalten durch eine Verbesserung der Aggregatauftrennung beeinflusst werden. Zuletzt wurde in der vorliegenden Dissertation die Herstellung von Nanorohrgelfilmen beschrieben. Neben Homogenität durch Nutzung von Gelatine und Stabilität durch Entfernung von Iodixanol sorgte eine Silikonform für eine einheitliche Dicke und Größe der präparierten (6,5)-Gelfilme. Röhrenaggregationen während der Iodixanolentfernung durch Zentrifugenfiltration konnten auf die Alterung der verwendeten Suspensionen zurückgeführt werden. Die optischen Dichten der so hergestellten Gelfilme standen immer in ähnlichen Verhältnissen zu denen der Ausgangssuspensionen, sodass die für die Gelfilme benötigten Röhrenkonzentrationen in den Ausgangssuspensionen relativ genau berechnet werden konnten. Um das Iodixanol für die Herstellung von (6,5)/(6,4)-Gelfilmen effektiv aus den Suspensionen zu entfernen, wurden drei verschiedene Dialysemembranen getestet. Dabei stellte sich die Membran mit einer Porengröße von 50 kD als bester Kompromiss aus effektiver Iodixanolentfernung und geringem Röhrenverlust heraus. Durch Einengung der (6,5)/(6,4)-Suspension konnten drei Gelfilme mit ausreichend hohen optischen Dichten hergestellt werden, wobei der dritte Film im Gegensatz zu den ersten beiden aufgrund des immer weiter abnehmenden Probenvolumens eine deutliche Röhrenaggregation zeigt. Dadurch eignen sie sich für weiterführende Experimente, wo mit Hilfe der Transienten-Absorptionsspektroskopie Untersuchungen zu Energie- und Ladungstransferprozessen zwischen CNTs verschiedener Chiralitäten durchgeführt werden könnten. / Within this present dissertation, dispersion efficiency, unbundling efficiency and tube quality of SWNT-suspensions were investigated. The tube quality was evaluated by quantum yield measurements. Furthermore, suspensions of the three different raw materials CoMoCAT, Black Sand and HiPCO, manufactured by treatment with sonication and shear-mixing, were compared. As expected, sonication exhibited a higher dispersion efficiency in comparison to shearmixing. Among the three raw materials, this efficiency was highest for Black Sand in each case, followed by CoMoCAT and HiPCO. A comparison between two HiPCO materials confirmed the considerable advantages in efficiency of unpurified materials. Despite the much lower density of the purified HiPCO-material, the dispersion with the shear-mixer was considerably less efficient. However, the difference in efficiency was smaller than for Black Sand and CoMoCAT. This is presumably due to a lower difference in carbon contents, which in turn depends on the respective manufacturing and purification processes. The dispersion rate at the beginning of the dispersion process was higher for the sheared Black Sand- and CoMoCAT samples, compared to the respective sonicated samples. Therefore, the combination of the two methods might possibly result in an improvement of the prepared suspensions with regard to the three investigated parameters. The comparison of the unbundling efficiencies once again showed the advantages of the sonication. Among these samples, the separation was considerably higher for Black Sand and HiPCO in comparison to the purified CoMoCAT. Accordingly, CoMoCAT still contains a higher proportion of aggregated tubes at any point during the sonication. Among the shearmixed samples, the unbundling worked by far best for Black Sand compared with CoMoCAT und HiPCO, which was also reflected by the OD ratios of sonicated and sheared samples. The observed quantum yield was up to 50 % higher for the sheared DGU-single-tube samples compared to the sonicated samples. This indicated a considerably lower damage to the tubes and thus a higher quality of the tubes. This was also confirmed by comparative measurements of single tubes. Furthermore, water penetrates into the tubes cut by ultrasonic sound, which is not the case for the shear-mixing. This perhaps allows the preparation of samples with modified properties. Comparing the materials, HiPCO showed the highest quantum yield. So the result of this manufacturing process is tubes with better quality than the tubes produced by the CoMoCAT process. The 70 % higher quantum yield of the Black Sand samples, compared to the CoMoCAT samples made it very clear that the tubes are damaged by the purification of the raw material. Cosidering also the damage caused by sonication, the difference is even 250 %. The sonicated HiPCO and Black Sand samples of the time-dependent measurements exhibited the fastest increase of the quantum yield due to the most efficient unbundling. It started to decrease again after 10-20 min as a result of the tube damage, influenced by the unbundling and dispersion efficiencies of the materials. Correspondingly, the quantum yields of the sheared samples increased slower over the whole measurement period of six hours. The dispersion by shear-mixing at increased viscosity resulted in an almost six times higher dispersion efficiency compared to water with an iodixanol share of 45 %. Since entrapped air also appears to influence the dispersion efficiency, it seems purposeful to use a sample volume between 13-14 mL under the given experimental conditions. It remains to be examined whether the unbundling efficiency and the tube quality are also affected by viscosity and entrapped air. In chapter 5, the dispersion of nanotubes with cationic perylene bisimide was investigated. Flocculation effects were observed after adding PBI solution to a SDS dispersed nanotube suspension. Those effects were delayed by high nanotube or SDS concentrations. This allowed the preparation of PBI nanotube films with a stripe pattern, using the coffee ring effect. It was demonstrated that the nanotubes can be embedded in the PBI. However the stripes were still arranged very irregularly and the tubes in the stripes were not aligned. The stability of the PBI nanotube suspensions was improved by an exchange of the anionic SDS to the cationic CTAB. It could be demonstrated that during the necessary dialysis, among other things, the sample should be moved as little as possible to avoid aggregation. In addition, the CTAB-Krafft-temperature of 25 °C had to be considered. Below this temperature, the tenside no longer forms micelles, which destabilizes the suspensions. Mixing experiments of CTAB nanotube suspensions with solutions consisting of different CTAB:PBI-ratios provided some evidence that CTAB alone is not able to stabilize the tubes. The reason for this may be a too small number of positive charges on the tube surface. As a result, a certain proportion of tenside would be necessary for stabilization. Despite a small addition of tenside, films with tubes embedded in PBI could be prepared. Under certain circumstances, the tubes could also be embedded in the liquid crystal phase of the PBI. Another reason for the unsufficiently stabilized tubes could be that the PBI aggregates are very difficult to separate. In such a case, the PBI adsorption behavior could be influenced by an improvement of the aggregate separation. Finally, the preparation of nanotube gel films was described. Besides homogeneity achieved by the use of gelatine and stability achieved by the removal of iodixanol, a silicone form ensured a uniform thickness and size of the prepared (6,5)-gel films. Tube aggregation during the removal of the iodixanol via centrifuge filtration could be attributed to an alteration of the used suspensions. The ODs of the so-prepared gel films always had similar ratios to the ODs of the starting suspensions. Therefore, the tube concentrations necessary for gel films could be calculated quite accurately. In order to remove the iodixanol from the suspensions for the preparation of (6,5)/(6,4)-gel films, three dialysis membranes were investigated. It turned out that the dialysis Membrane with a pore size of 50 kD is the best compromise between an efficient removal of the iodixanol and a small loss of nanotubes. By concentrating the (6,5)/(6,4)-suspension, three gel films with sufficiently high optical densities could be prepared. The third film exhibits a clear nanotube aggregation in contrast to the first two films due to the continuously decreasing sample volume. Thus, energy- and charge transfer processes between CNTs with different chiralities could be investigated using transient absorption spectroscopy.
5

Electrochromic systems based on metallopolymers and metal oxides: towards neutral tint and near-infrared transmission modulation / Elektrochrome Systeme basierend auf Metallopolymeren und Metalloxiden: Auf dem Weg Richtung Neutralfärbung und Modulation im infraroten Bereich

Niklaus, Lukas January 2022 (has links) (PDF)
While the field of electrochromic (EC) materials and devices (ECDs) continues to advance in terms of color palette and understanding the underlying mechanism, several scientific and technological challenges need to be addressed by optimizing the materials and understanding the electrochemical interplay of these materials in full cells. The main issue here is to further improve the EC profile for color neutrality and cycling stability in order to commercialize dimmable EC products. The transparent conductive substrates used in this work (FTO and ultra-thin ITO glass) have high visible light transmittance (τv > 85%) and low sheet resistance (< 25 Ω·sq-1). In addition, the Li+-containing gel electrolyte has sufficient ionic conductivity (2.8·10-4 S·cm-1 at 25 °C), so the investigated ECDs could achieve a fast response (required ionic conductivity is between 10−3 and 10−7 S·cm-1). This work shows that the combination of cathodically-coloring Fe-MEPE with anodically-coloring non-stoichiometric nickel oxide (Ni1-xO) electrodes (prepared by the National Institute of Chemistry in Ljubljana, Slovenia) can be used in neutral-coloring type III ECDs. The Fe-MEPE/Ni1-xO ECD with the underbalanced CE (ECD1-1, 2: 1) and the balanced configuration (ECD1-2, 1: 1) are both nearly neutrally-colored (ECD1-1: a* = -6.7, b* = 8.8; ECD1-2: a* = -9.0, b* = 10.1) in the bright state with a τv of almost 70%. Due to the overbalancing of the CE (ECD1-3, 1:3), a deviation (a* = -2.8, b* = 19.9) from the neutral coloration occurred here. The balanced as well as the overbalanced ECD configurations show high electrochemical cycling stability (over 1,000 potentiostatic switching cycles). In general, the overbalanced configuration offers the advantage of a smaller operating voltage range (-1 V ↔ 2.5 V to -1 V ↔ 1.5 V), i.e., avoiding possible electrochemical degradation of the EC materials, electrolyte, or conductive layers. By using a Li RE in the full cell, insights into the optimal matching of electrochemical and optical properties between the two electrodes are obtained to achieve more stable ECDs. Thereby, the redox potentials of both EC electrodes (Fe-MEPE and Ni1-xO) can be measured during operation. The incomplete decolorization of ECD1-1 can be explained by the measured electrode potentials (below the required 4 V vs. Li/Li+), excluding side reactions and degradation at both electrodes. The results demonstrate the importance of using balanced and (slightly) overbalanced ECD configurations with complementary-coloring EC electrodes to achieve high cycling stability and fast switching at low operating voltages. Therefore, this three-electrode configuration provides an excellent method for in situ electrochemical characterization of the individual EC electrodes to better understand the redox processes during device operation and to further improve the optical contrast and cycle stability of ECDs. The Fe-MEPE/Ni1-xO combination was tested on flexible ultrathin ITO glass (ECD1-4). Here, by applying a low voltage of -1 V ↔ 2.5 V, the MEPE/Ni1-xO ECDs can be reversibly switched from a colored (L* = 35.6, a* = 19.4, b* = -26.7) to a nearly colorless (L* = 78.5, a* = -14.0, b* = 21.3) state. This is accompanied by a change in τv from 6% to 53%. The ECDs exhibit fast response and good cycling stability (5% loss of optical contrast over 100 switching cycles). To further improve color neutrality and cycling stability, ECDs combining Fe-MEPE and mixed metal oxides as ion storage layers were investigated. Titanium manganese oxide (TMO, Fraunhofer IST) and titanium vanadium oxide (TiVOx, EControl-Glas GmbH & Co. KG) electrodes are compared for use as optically-passive ion storage layers. TiVOx with a maximum charge density of approx. 27 mC·cm-2 and a coloration efficiency of η = 2 cm·C-1 at 584 nm shows a color change from yellow to light gray at 2 V vs. Ag/AgCl, while the slightly anodically-coloring Ti-rich TMO (10.5 mC·cm-², η584 nm = -4 cm·C-1) switches from light yellow to colorless at -2.5 V vs. Ag/AgCl. These materials show only a slight change in τv value from 85% to 75% and from 72% to 81%, respectively, thus reaching the requirements for highly transmissive optical-passive ion storage layers. The ECDs with Fe-MEPE in combination with TiVOx (ECD2-1) and TMO-1 (ECD2-2) are blue-purple in the dark state (0 V) and turn colorless by applying a voltage of 1.5 V, changing the τv value from 28% to 69% and from 21% to 57% in 3 s and 13 s, respectively. The ECDs show fast responses and high cyclability over more than 100 cycles. In the last section, the simplification of cell architecture by using redox mediators shows that different redox mediators (KHCF(III), Fc-PF6, Fc-BF4, and TMTU) can be used in type II ECDs (4 instead of 5 layers) consisting of Fe-MEPE or Ni1-xO thin film electrodes. The combination of KHCF(III) with Fe-MEPE has a low cycling stability due to the electrochemical formation of Prussian blue (PB). This side reaction is undesirable as it decreases the optical contrast. It can be avoided by using Fc+- (ECD3-5/6) or TMTU-based (ECD3-7) redox mediators, which exhibit reversible redox behavior. A high τv value of 72% is obtained for the use of TMTU. Low concentrations (<0.1 M) of redox mediators decrease the cell voltage for complete switching without affecting the optical properties of the ECDs. The redox couple TMTU/TMFDS2+ (molar ratio of 1:0.1 in 1 M LiClO4/PC as electrolyte) works well in combination with Ni1-xO electrodes (ECD3-10), with a change in τv value from 38% (colored at 2 V, L* = 67.1, a* = 3.9, b* = 17.2) to 70% at (decolored at -2 V, L* = 86.6, a* = -0.6, b* = 17.2). This result implies that incorporating redox mediators into the electrolyte is an effective means to simplify the cell assembly and color neutrality can be obtained with one optically active WE and a color-neutral redox mediator. Moreover, the combination of Ni1-xO and the colorless TMTU/TMFDS2+ redox mediator is a potential candidate to obtain neutrally colored ECDs. It is shown that the lab-sized FTO- and ultra-thin ITO-glass-based ECDs are very attractive for energy-efficient EC applications, e.g., in architectural or automotive glazing, aircraft, ships, home appliances and displays. To monitor the EC performance and to prevent diverging electrode potentials during the switching process, the studied three-electrode configuration can help to extend the cycle stability as well as to improve the charge balancing of dimmable applications. The studied ECDs display a route towards neutral tint, e.g., EC active Ni1-xO, optically-inactive mixed metal oxides, and colorless redox mediators. Nevertheless, color neutrality should be further improved to meet the requirements for industrial applications. For future work, a scale-up process from lab-sized (few cm²) to prototype (few m²) ECDs will be necessary. / Während das Gebiet der elektrochromen (EC) Materialien in Bezug auf die Farbpalette und das Verständnis des zugrundeliegenden Mechanismus weiter erforscht wird, bleiben einige wissenschaftliche und technologische Herausforderungen bestehen, die sowohl durch Optimierung der EC Materialien als auch durch tiefergehendes Verständnis des elektrochemischen Zusammenspiels dieser Materialien in elektrochromen Elementen (ECD) angegangen werden müssen. Hier geht es vor allem darum, das EC-Profil in Bezug auf Farbneutralität und Stabilität weiter zu verbessern, um kostengünstige und energieeffiziente Produkte zu kommerzialisieren. Die in der Arbeit verwendeten Substrate (FTO-Glas und ultradünnes ITO-Glas) weisen einen hohen Transmissionsgrad (τv > 85 %) und einen geringen Oberflächenwiderstand (< 25 Ω·sq-1) auf. Zusätzlich hat der eingesetzte Li+-haltige Elektrolyt ausreichend Ionenleitfähigkeit (2.8·10-4 S·cm-1 bei 25 °C), so dass die untersuchten ECDs schnelle Schaltzeiten erreichen konnten (erforderliche Ionenleitfähigkeit: 10-3 und 10-7 S·cm-1). Die Ergebnisse dieser Arbeit zeigen, dass die Kombination aus kathodisch färbenden Fe-MEPE-Elektroden mit anodisch färbenden Ni1-xO Gegenelektroden (National Institute of Chemistry, Ljubljana, Slovenia) in neutralfärbenden Typ III ECDs verwendet werden kann. Sowohl die Fe-MEPE/Ni1-xO ECD mit einer unterdimensionierten Gegenelektrode (ECD1-1, 2: 1) und die balancierte Konfiguration (ECD1-2, 1: 1) sind beide im entfärbten Zustand mit einem τv von fast 70 % zudem fast neutral gefärbt (ECD1-1: a* = -6,7, b* = 8,8; ECD1-2: a* = -9,0, b* = 10,1). Durch die Überdimensionierung der Gegenelektrode (ECD1-3, 1:3) entstand hier eine Abweichung (a* = -2,8, b* = 19,9) von der geforderten Neutralfärbung. Die balancierte sowie die überdimensionierte ECD-Konfiguration zeigen eine hohe elektrochemische Zyklenstabilität (über 1.000 potentiostatische Schaltvorgänge). Im Allgemeinen bot die überdimensionierte Konfiguration den Vorteil eines kleineren Spannungsfensters (-1 V ↔ 1,5 V statt -1 V ↔ 2,5 V), d.h. der Vermeidung einer möglichen Degradation der EC Materialien, des Elektrolyten oder der leitfähigen Schichten. Durch den Einsatz einer Li RE in der ECD wurden Erkenntnisse über die optimale Anpassung der elektrochemischen und optischen Eigenschaften zwischen beiden Elektroden erhalten. Hierdurch konnten die Redoxpotentiale beider EC Elektroden (Fe-MEPE und Ni1-xO) während des Schaltvorgangs gemessen werden. Das unvollständige Entfärben von ECD1-1 kann durch die gemessenen Elektrodenpotentiale (unter den geforderten 4 V vs. Li/Li+) erklärt werden, wobei Nebenreaktionen und Degradation an beiden Elektroden ausgeschlossen sind. Die Ergebnisse zeigen, wie wichtig es ist, balancierte und (leicht) überdimensionierte Konfigurationen mit komplementär färbenden Elektroden für stabil schaltende ECDs mit niedriger Zellenspannung zu verwenden. Somit bietet die Drei-Elektroden-Konfiguration eine hervorragende Methode zur elektrochemischen in situ Charakterisierung der einzelnen EC-Elektroden, um die Redoxprozesse während des Schaltvorgangs besser zu verstehen und den optischen Kontrast und die Stabilität von ECDs weiter zu verbessern. Die Fe-MEPE/Ni1-xO Kombination wurde auf flexibles ultradünnes ITO-Glas übertragen (ECD1-4). Hier schaltet die MEPE/Ni1-xO-ECD durch das Anlegen einer niedrigen Spannung von -1 V ↔ 2,5 V reversibel von einem gefärbten Zustand (L* = 35,6, a* = 19,4, b* = -26,7) in einen nahezu farblosen Zustand (L* = 78,5, a* = -14,0, b* = 21,3). Dies geht mit einer Änderung des τv-Wertes von 6% auf 53% einher. Die ECD weist schnelle Schaltzeiten sowie eine gute Zyklenstabilität (5% Verlust des optischen Kontrasts über 100 Schaltzyklen) auf. Um die Farbneutralität und Langzeitstabilität weiter zu verbessern, werden ECDs aus Fe-MEPE Arbeits- und mischmetalloxidische Ionenspeicherelektroden untersucht. Titan-Manganoxid (TMO)-Elektroden (vom Fraunhofer IST) wurden mit kommerziell erhältlichem Titan-Vanadiumoxid (TiVOx, EControl-Glas GmbH & Co. KG) zur Verwendung als optisch passive Ionenspeicherschichten verglichen. TiVOx mit einer maximalen Ladungsdichte von ca. 27 mC·cm-² und einer Färbeeffizienz von η584 nm = 2 cm·C-1 weist eine Farbänderung von gelb nach hellgrau bei 2 V vs. Ag/AgCl, während das anodisch färbende Ti-reichen TMO (10,5 mC·cm-², η584 nm = -4 cm·C-1) bei -2,5 V vs. Ag/AgCl von hellgelb nach farblos schaltete. Diese Materialien zeigen nur eine geringe Änderung des τv-Wertes von 85 % auf 75 % bzw. von 72 % auf 81 %, wodurch die Anforderungen an hoch transmissive optisch-passive Ionenspeicherschichten erfüllt sind. Die ECDs mit Fe-MEPE in Kombination mit TiVOx (ECD2-1) und TMO-1 (ECD2-2) sind im gefärbten Zustand (0 V) blau-lila gefärbt und werden durch Anlegen einer Zellspannung von 1,5 V farblos, wobei sich der τv-Wert in 3 s bzw. 13 s von 28 % auf 69 % und von 21 % auf 57 % ändert. Die ECDs zeigen schnelle Reaktionen und eine gute Reversibilität (> 100 Zyklen). Kapitel 4 befasste sich mit der Vereinfachung der Zellarchitektur durch Verwendung von Redoxmediatoren. Diese Arbeit zeigt, dass verschiedene Redoxmediatoren (KHCF (III), Fc-PF6, Fc-BF4 und TMTU) in Typ II ECDs (4 statt 5 Schichten) verwendet werden können, die aus Fe-MEPE oder Ni1-xO Elektroden bestehen. Die Kombination von KHCF(III) mit Fe-MEPE-Elektroden hat aufgrund der Bildung von Preußisch Blau (PB) eine geringe Zyklenstabilität. Diese Nebenreaktion ist unerwünscht, da sie den optischen Kontrast vermindert. Sie kann durch die Verwendung von Redoxmediatoren auf Fc+- (ECD3-5/6) oder TMTU-Basis (ECD3-7) vermieden werden, da diese ein reversibles Redoxverhalten aufweisen. Für den Einsatz von TMTU wurde ein hoher τv-Wert von 72 % (L* = 87,7, a* = -9,2, b* = 11,6) erhalten. Niedrige Konzentrationen von Redoxmediatoren (< 0,1 M) verringern die Zellspannung, ohne die optischen Eigenschaften der ECDs zu beeinflussen. TMTU/TMFDS2+ (Molverhältnis von 1:0,1 in 1 M LiClO4/PC als Elektrolyt) wurde erfolgreich als Redoxmediator in Kombination mit Ni1-xO-Elektroden eingesetzt, wobei eine Änderung des τv-Wertes von 38 % (gefärbt bei 2 V, L* = 67,1, a* = 3,9, b* = 17,2) auf 70 % bei (entfärbt bei -2 V, L* = 86,6, a* = -0,6, b* = 17,2) erzielt wurde. Dieses Ergebnis impliziert, dass der Einsatz von Redoxmediatoren in den Elektrolyten ein effektives Mittel zur Vereinfachung des Zellaufbaus sind und Farbneutralität mit einer optisch aktiven WE und einem farbneutralen Redoxmediator erreicht werden kann. Ein exzellentes Beispiel ist hierfür die Kombination von Ni1-xO und des farblose TMTU/TMFDS2+-Redoxmediator. Es wurde gezeigt, dass FTO- und ultradünnen ITO-Glas-basierte ECDs sehr attraktiv für energieeffiziente EC-Anwendungen sind, z. B. in Architektur- oder Automobilverglasungen, Flugzeugen, Schiffen, Haushaltsgeräten und Displays. Um die Änderung der Elektrodenpotentiale während des Schaltvorgangs zu überwachen, kann die Drei-Elektroden-Konfiguration helfen, die Zyklenstabilität zu verbessern. Die untersuchten ECDs zeigen einen Weg zur Farbneutralität auf, z.B. EC-aktives Ni1-xO, optisch inaktive Mischmetalloxide und farblose Redoxmediatoren. Dennoch sollte die Farbneutralität weiter verbessert werden, um die Anforderungen für industrielle Anwendungen zu erfüllen und für zukünftige Arbeiten ist ein Scale-up-Prozess von Laborgröße (wenige cm²) zu Prototypen (wenige m²) ECDs notwendig.
6

The life of an exciton: From ultrafast nonradiative relaxation to high quantum yield fluorescence / Das Leben eines Exzitons: Von ultraschneller nicht-radiativer Relaxation zu Fluoreszenz mit hoher Quantenausbeute

Hoche, Joscha January 2023 (has links) (PDF)
This thesis focuses on understanding and predicting processes in chromophores after electronic state excitation, particularly the impact on luminescence - the spontaneous emission of light. It considers the effect of processes preceding luminescence on emission properties, which are challenging to predict, especially in complex aggregates. For example, excitation energy transfer is a crucial process in understanding luminescence, as it allows the emission to occur from different molecular units than where the absorption occurs. This can lead to significant shifts in emission wavelength and fluorescence quantum yields. The thesis offers solutions to model this process effectively, understanding the impact of excitation energy and exciton coupling disorder on energy transfer rates and linking simulated energy transfer to experimental measurements. The work further explores excimer formation - an undesired luminescence loss channel due to its significant stabilization of the electronic state. Usually, the molecules obey a stacked conformation with parallel orientation to maximize the orbital overlap. This energetic lowering of the excited state can often result in trapping of the dimer in this state due to a deep minimum on the potential energy surface. The excimer formation dynamics, structural rearrangement, and its influence on singlet-correlated triplet pair states formation, critical for the singlet-fission process, have been extensively studied. The thesis also focuses on another luminescence loss channel triggered by conical intersections between the electronic ground and the first excited states. A new model is introduced to overcome limitations in current simulation methods, considering the solvent's electrostatic and frictional effects on the barriers. The model accurately describes merocyanine dyes' solvent-dependent photoluminescence quantum yields and characterizes all relaxation channels in different BODIPY oligomer series. / Im Rahmen dieser Dissertation wurden neue Ansätze und Methoden für die Simulation und Untersuchung von optischen Eigenschaften organischer Chromophore und deren supramolekularer Aggregate entwickelt. Die Motivation lag dabei darin umfassend zu verstehen, welche Prozesse nach der Anregung eines molekularen Systems stattfinden und dessen Emissionseigenschaften beeinflussen. Dabei wurde nicht nur die ultraschnelle Dynamik der elektronischen und geometrischen Relaxation innerhalb von Femto- oder Pikosekunden berücksichtigt sondern auch die radiativen und nicht-radiativen Prozesse auf der Nano- bis Mikrosekunden-Zeitskala. Die gewonnenen Erkenntnisse lassen sich anhand dieser Prozesse und Zeitskalen in die folgenden drei Bereiche gruppieren: (A) Ultraschnelle Energietransfer- und Exzitonlokalisierungdynamik • Bei Chromophoren, die sich in einem schwachen exzitonischen Kopplungsregime befinden, konnte gezeigt werden, dass die interne Konversion von höher angeregten elektronischen Zuständen zum ersten angeregten Singulettzustand durch einen Energietransferprozess begleitet wird. Im Fall der Squarain-Triaden war es möglich, durch Simulationen die Exzitonendynamik über mehrere Untereinheiten aufzudecken. Hierbei gelang es zu zeigen, dass es während der Dynamik zu transienten Lokalisierungen und Delokalisierungen der Anregungen kommt, bis sich das Exziton in allen untersuchten Systemen innerhalb von wenigen hundert Femtosekunden auf einer der Untereinheiten lokalisiert. • Für die zwei verschiedenen BODIPY-Serien, die sich nur durch eine Ethylgruppe unterscheiden, gelang es die deutlichen Unterschiede in der Energietransferdynamik durch die Simulationen eindeutig aufzuklären. Obwohl die Absorptions- und Emissionseigenschaften beider Serien keine wesentlichen Unterschiede aufwiesen, sah man in der —-ethyl verbrückten Serie einen 35 % schnelleren Energietransfer von grünen zu roten BODIPY-Einheiten. Durch Kombination von lichtinduzierten Dynamiksimulationen mit neu entwickelten Analysemethoden gelang es, die Anregungsenergie- und Exzitonkopplungsunordnung direkt vorherzusagen. Am Beispiel der BODIPY-Serien konnte so gezeigt werden, dass die Ethylgruppe zu einer signifikanten Reduzierung dieser Unordnungen führt. Dies führt zu kleineren internen Konversionraten und verlangsamt auf diese Weise den Energietransfer. • Die zeitaufgelöste Polarisationsanisotropie-Spektroskopie (auch Fluoreszenzanisotropie-Spektroskopie genannt) ermöglicht es, die Änderung des Übergangsdipolmoments von populierten angeregten Zuständen zeitlich zu verfolgen. Hier konnte aufbauend auf lichtinduzierten Dynamiksimulationen eine Methode entwickelt werden, die die Simulation von zeitaufgelösten Polarisationsanisotropie-Spektren ermöglicht. Am Beispiel der BODIPY-Pyren-Dyade und -Triade konnten diese Spektren erfolgreich simuliert werden und dies ermöglichte es, die verschiedenen Phasen des Energietransfers präzise abzubilden. Damit bildet diese Methode für die Zukunft eine wichtige Brücke zwischen experimentellen Polarisationsanisotropie-Messungen und der theoretischen Nachverfolgung der Energietransferdynamik. B) Exzimerbildung und deren Wechselwirkung mit triplett-korrelierten Singulettzuständen (1 TT) • Da die Exzimerbildung eine wichtige Rolle als Verlustkanal bei der Emission spielt, wurde am Beispiel des Tetracen-Dimers die Dynamik dieses Prozesses simuliert. Hierbei konnte zunächst gezeigt werden, dass semi-empirische Quantenchemiemethoden eine gute Übereinstimmung mit DFT-MRCI bei der Berechnung von Potentialenergieflächen der elektronischen Zustände zeigen. Dies ermöglichte es, erstmals nicht-adiabatische Dynamik für 20 Pikosekunden in diesem System zu simulieren. Die Exzimerbildung fand hierbei in etwa 5-6 ps statt und die Hälfte der untersuchten Dimere bildete ein Exzimer. Zusätzlich war es möglich durch Diabatisierung der populierten einfach- und doppelangeregten Zustände den Charakter nach lokal-angeregten (LE), Ladungstransfer-(CT) und triplett-korrelierten Singulettzuständen (1 TT) zu klassifizieren. Auf diese Weise konnten diabatische zeitabhängige Zustandspopulationen berechnet und die Beteiligung des ( 1 TT)-Zustands an der Exzimerbildung aufgeklärt werden. Während der Exzimerbildungsdynamik konnte so eine transiente Besetzung des ( 1 TT)-Zustands für etwa 2-3 ps beobachtet werden. Allerdings wurde nach etwa 5 ps der Zustand wieder vollständig depopuliert. Gleichzeitig konnte beobachtet werden, dass starke Schwingungsanregungen der Moleküle eine wesentliche Rolle in der Exzimerbildung spielen. (C) Simulation von Photolumineszenz-Quantene Aufbauend auf Englmans & Jortners Energy-Gap-Law und der Kramers’schen Ratentheorie wurde ein neues Modell entwickelt, um interne Konversionsraten vorherzusagen. Mit diesem Modell können sowohl Polaritäts- und Viskositätseffekte des Lösungsmittels als auch die Relaxation über konische Durchschneidungen berücksichtigt werden. Hiermit war es möglich, die Relaxationsprozesse eines Merocyanin-Farbstoffs in unterschiedlichen Lösungsmitteln vollständig aufzuklären und die Raten quantitativ zu simulieren. In Kombination mit transienter Absorptionsspektroskopie konnte zudem die Photoisomerisierung verstanden werden und temperaturabhängige PLQE-Messungen konnten zeigen, dass das entwickelte Modell auch die Temperaturabhängigkeit der Relaxationsraten richtig vorhersagt. Auf Basis des zuvor entwickelten Modells wurden in einer großen Serie von BODIPY-Oligomeren, mit insgesamt mehr als 25 verschiedenen molekularen Systemen, die Relaxationsprozesse untersucht. Dafür wurden hierbei auch die Intersystem-Crossing-Übergänge und der reduktive Photoelektronentransfer berücksichtigt und es gelang für alle acht verschiedenen Grundeinheiten den dominanten Relaxationskanal aufzuklären. Jedoch wurden nicht nur die dominanten Kanäle identifiziert, sondern auch die Skalierungsrelation der Raten in Abhän nigkeit der Zahl der Monomereinheiten. Dabei wächst die radiative und die intersystem Crossing Rate mit der Zahl der Monomere an. Die Rate für die Relaxation über eine konische Durchschneidung hingegen ist nahezu konstant. Der Teil der internen Konversionrate, der sich in harmonischer Näherung beschreiben lässt, zeigt wiederum einen starken Abfall mit zunehmender Anzahl an Monomeren. Dies ist insbesondere bei J-Aggregaten nicht offensichtlich, da eine Erhöhung der Rate durch die Absenkung der Anregungsenergie erwartbar wäre. Jedoch führt die Oligomerisierung zu einer Abnahme der Huang-Rhys Faktoren, die hierbei stark überwiegt. Diese Ergebnisse haben experimentelle Untersuchungen angestoßen, in denen durch gezielte Oligomerisierung die PLQE von 7 % auf über 80 % erhöht werden konnte. Insgesamt wurden in dieser Dissertation neue Ansätze und Methoden für die Simulation von optischen Eigenschaften in organischen Systemen eingeführt und angewandt. Die hier vorgestellten Ergebnisse zeigen, dass es mit diesen Methoden zum einen möglich ist die ultraschnelle Relaxationsdynamik nach der Anregung zu beschreiben. Hierbei konnte sowohl die Exzitonendynamik und der Energietransfer zwischen Chromophoreinheiten als auch die Exzimerbildung explizit simuliert werden. Zum anderen gelang es die radiativen und nicht-radiativen Prozesse in verschiedenen Fluorophoren zu identifizieren und deren Raten quantitativ zu beschreiben. Damit stellen diese Ergebnisse eine wichtige Grundlage für die Entwicklung neuer Materialien für die organische Elektronik, wie zum Beispiel organische Leuchtdioden, Photovoltaik oder tragbare Technologien, dar.
7

Velocity-Map-Imaging Studien an reaktiven Intermediaten: Fulvenallen, C3H2 Isomere und Alkylradikale / Velocity-Map-Imaging studies on reactive intermediates: fulvenallen, C3H2 isomers and alkylradicals

Giegerich, Jens January 2015 (has links) (PDF)
In der vorliegenden Dissertation wurde die Photodissoziationsdynamik einer Reihe reaktiver Intermediate mittels Velocity-Map-Imaging Spektroskopie untersucht. Diese sind vor allem im Kontext von Verbrennungsprozessen sowie der Chemie im interstellaren Raum von Interesse. Die wichtigsten Erkenntnisse dieser Arbeit sollen nun kurz zusammengefasst werden. Fulvenallen stellt einen wichtigen Verzweigungspunkt in der Verbrennung von Toluol dar. Die Photodissoziationsdynamik von Fulvenallen, welches pyrolytisch aus Phthalid generiert wurde, konnte im Wellenlängenbereich von 245 - 255 nm aufgeklärt werden. Dabei ist die ermittelte Dissoziationsrate (kH ≈ 107 s-1) in guter Übereinstimmung mit der mittels RRKM vorhergesagten Rate. In VMI-Experimenten zeigten die, durch Photodissoziation abstrahierten, Wasserstoffatome eine isotrope Winkelverteilung, wobei diese einen Anteil an der Überschussenergie von <fT>= 0:09 in Form von kinetischer Energie besaßen. Die Photodissoziation von Fulvenallen erfolgt statistisch ohne nennenswerte Rückbarriere. Sowohl Winkel- als auch Energieverteilung sprechen für den folgenden Dissoziationsmechanismus: Fulvenallen wird durch ein Photon in den D1A1 Zustand angeregt, aus dem es durch interne Konversion schnell in den elektronischen Grundzustand relaxiert, aus dem es anschließend in einem statistischen Prozess dissoziiert. Spezies der Zusammensetzung C3H2 wurden im interstellaren Raum und in Flammenexperimenten beobachtet. In dieser Arbeit wurden zwei Isomere, Propargylen und Cyclopropenyliden, untersucht. Die Photodissoziation von Propargylen wurde bei einer Anregungswellenlänge von 250 nm untersucht. In den VMI-Experimenten wurden Wasserstoffatome mit einem Erwartungswert der kinetischen Energie von <ET>= 0.53 eV beobachtet, was einem Anteil an der Überschussenergie von <fT>= 0.48 entspricht. Diese von Propargylen abstrahierten H-Atome waren trotz der hohen Translationsenergie mit einem Anisotropieparameter von = -0.05 nur leicht anisotrop verteilt. Durch den Vergleich mit quanten-klassischen Dynamik Simulationen ließ sich folgendes Bild der Dissoziation gewinnen: Propargylen wird mit 250 nm in den sechsten angeregten Triplett-Zustand T6 angeregt. Die anschließende Dissoziation ist direkt und erfolgt in ca. 200 fs aus T4 - T6. Der geringe Anisotropiegrad wurde durch einen Dissoziationsprozess erklärt, bei dem µT und die gebrochene C-H Bindung annähernd im magischen Winkel zueinander angeordnet sind. Die Photodissoziation von Cyclopropenyliden wurde bei einer Anregungswellenlänge von 271 nm untersucht. Dabei wurden die Experimente an zwei unterschiedlichen Radikalvorläufern, 3-Chlorcyclopropen und einem Quadricyclanderivat, durchgeführt. Diese führten im Wesentlichen zu denselben Ergebnissen. Die VMI-Experimente zeigen, dass in der Photodissoziation von Cyclopropenyliden die Hälfte der Überschussenergie in die Translation der Wasserstoffatome fließt (<fT>= 0:50). Aus der Winkelverteilung der abstrahierten Wasserstoffatome ergab sich eine isotrope Verteilung ( = 0). Der Vergleich mit quantendynamischen Simulationen erlaubt folgende Aussagen über den Dissoziationsmechanismus: Cyclopropenyliden wird mit einem Photon mit 271 nm in den zweiten angeregten Singulett-Zustand angeregt. Durch zwei konische Durchschneidungen relaxiert es in den elektronischen Grundzustand. Dabei kann die zyklische Struktur aufgebrochen und ein lineares Isomer gebildet werden. Die Berechnungen sagen ein Verhältnis cyklischer zu offenkettiger Struktur (Bruch der C=C Doppelbindung) von ca. 75 : 20 voraus. Die Dissoziation erfolgt annähernd ideal statistisch aus dem elektronischen Grundzustand. Für beide Isomere ergab sich eine sehr gute Übereinstimmung zwischen Theorie und Experiment. Alkylradikale spielen ebenfalls eine wichtige Rolle in der interstellaren und der Verbrennungschemie und können als prototypische offenschalige Systeme angesehen werden. In der vorliegenden Arbeit wurde die Photodissoziationsdynamik des i-Propyl- und des t-Butylradikals untersucht und die Ergebnisse mit früheren VMI-Studien am Ethylradikal verglichen. Die Translationsenergieverteilung der in der Photodissoziation erzeugten H-Atome ist für alle drei Radikale bimodal. Dabei sind die Wasserstoffatome, welche ihr Maximum in der Translationsenergieverteilung bei niedrigen kinetischen Energien erreichen, isotrop verteilt. Die H-Atome mit hoher kinetischer Energie sind anisotrop verteilt. Aus dem Vergleich mit älteren Arbeiten wurde ein möglicher Dissoziationsmechanismus für die Alkylradikale erarbeitet. Dieser basiert auf Rydberg-Valenz-Wechselwirkungen und kann beide beobachteten Wasserstoffatomkanäle erklären. Außerdem kann damit ein möglicher C-C Bindungsbruch und die Bildung eines Methylradikals erklärt werden, welche für t-Butyl in der Literatur bereits beobachtet wurde. Für eine solide theoretische Basis sind jedoch weitere umfassende quantenchemische und quantendynamische Studien erforderlich. Methyliodid zählt, was die Photodissoziation anbelangt, zu den am besten untersuchten Molekülen. Die in dieser Arbeit durchgeführten VMI-Experimente bezüglich der Photodissoziation von Methyliodid dienten in erster Linie als Kalibrierexperimente der Apparatur für schwerere Massen als Wasserstoff. Dabei zeigten die Experimente eine qualitativ gute Übereinstimmung mit früheren Studien, wodurch die Kalibrierparameter ermittelt werden konnten. Außerdem wurde die große Absorption bei 266 nm genutzt um die neue Photolysequelle in Betrieb zu nehmen. Damit ist es zukünftig möglich, pyrolytisch nicht zugängliche Radikale, wie z.B. Radikale, deren ungepaartes Elektron an einem Sauerstoffatom lokalisiert ist, zu erzeugen. Des Weiteren wurden pyrolytisch und photolytisch erzeugte freie Radikale miteinander verglichen. Dabei zeigte sich, dass die Photolyse Radikale mit geringerer interner Energie generiert, wobei die Pyrolyse eine deutlich höhere Konversionseffizienz besitzt. Aufgenommene Images bei unterschiedlichen Pyrolyseleistungen erlaubten die Abschätzung der effektiven Temperatur des Molekularstrahls. Diese Erkenntnis ist besonders im Hinblick auf die Diskussion zukünftiger Pyrolyseexperimente interessant. / The photodissociation dynamics of a series of reactive intermediates has been studied in this dissertation using velocity-map-imaging spectroscopy. They are of interest in the context of combustion and astrochemistry. The most important results are summarized below. Fulvenallene is an important branching point in the combustion of toluene. The photodissociation dynamics of fulvenallene, which has been generated pyrolytically from phthalide, was elucidated in the wavelength region from 245 to 255 nm. The determined dissociation rate (kH ≈ 107 s-1) is in good agreement with RRKM predictions. VMI-experiments showed that the H-atoms, generated via photodissociation, are isotropically distributed. A fraction of the available excess energy of <fT >= 0:09 is released as translation. The photodissociation of fulvenallene is statistical without a notable reverse barrier. Both the photofragment angular distribution as well as the translational energy distribution point at the following statistical dissociation mechanism: One photon excites fulvenallene to the D1A1 state which undergoes a fast internal conversion to the electronic ground state followed by the statistical dissociation of the molecule. Molecules with the composition of C3H2 were observed in the interstellar medium and in flame experiments. Two of the possible isomers, propargylene and cyclopropenylidene, have been studied in this thesis. The photodissociation of propargylene has been studied at 250 nm excitation. H-atoms with an expectation value for the translational energy of <ET>= 0:53 eV, corresponding to a fraction of the total available excess energy of <fT>= 0:48 have been observed in the VMI-experiments. Despite the high kinetic energy of the H-atoms, their photofragment angular distribution was almost isotropic with an anisotropy parameter of = -0:05. Quantum-classical dynamics simulations suggest the following dissociation mechanism: Propargylene is excited to the 6th excited triplet state T6 at 250 nm. The subsequent dissociation is direct and takes place from T4 - T6 within roughly 200 fs after excitation. The dissociation occurs with µT and the breaking C-H bond being arranged close to the magic angle, which explains the low anisotropy. The photodissociation of cyclopropenylidene has been studied at an excitation wavelength of 271 nm. Two different radical precursors, 3-chlorocyclopropene and a quadricyclan derivate, have been employed for the experiments and lead essentially to the same results. The VMI-experiments showed that half of the available excess energy in the photodissociation of cyclopropenylidene was released as translation (<fT>= 0:50), while the photofragment angular distribution was isotropic ( = 0). Comparison with quantumdynamic simulations allow to propose the following dissociation mechanism: Cyclopropenylidene is excited by a 271 nm photon into the 2nd excited singlet state. The excited molecule relaxes to the electronic ground state via two conical intersections. During this process the cyclic geometry can break and an open-chain isomer is formed. Calculations suggest a proportion of the cyclic to the open-chain isomer (break of the C=C bond) of 75 : 20. The dissociation is approximately of ideal statistical nature and takes place from the electronic ground state. Alkyl radicals also play an important role in interstellar chemistry and combustion chemistry. In the present dissertation the photodissociation dynamics of the i-propyl and the t-butyl radical have been investigated and compared to previous VMI studies of the ethyl radical. The translational energy distribution of the H-atoms generated via photodissociation is bimodal for all three radicals. While H-atoms with a maximum at low translational energies are distributed isotropically, H-atoms with high kinetic energy are distributed anisotropically. Comparison with previous studies suggest a possible dissociation mechanism for alkyl radicals. The dissociation mechanism is based on Rydberg-valance interactions and explains the two observed H-atom pathways. It furthermore provides an explanation for the C-C bond cleavage and the formation of methyl radicals, which has been observed for the t-butyl radical in the literature. For a solid theoretical basis further extensive high-level computations are necessary. The photodissociation of methyl iodide is one of the most extensively studied photodissociation processes. VMI-experiments concerning the photodissociation of methyl iodide were primarily carried out as calibration experiments for fragments which are heavier than H-atoms. The experiments were in good qualitative agreement with previous studies and calibration parameters were established. Furthermore, the high absorption at 266 nm was used to put a photolysis source into operation. This setup allows the generation of radicals which can't be generated pyrolytically, e. g. oxygen containing radicals. The pyrolytically and photolytically generated free radicals were compared. While radicals generated via photolysis have less internal energy than pyrolytically generated radicals, pyrolysis has a higher conversion effciency, resulting in a higher signal. Imaging experiments conducted at various pyrolysis powers allowed the approximative determination of the effective temperature of the molecular beam. This result will be especially useful with regard to future pyrolysis experiments.
8

Quantum Studies on Low-Dimensional Coupled Electron-Nuclear Dynamics / Quantentheoretische Untersuchungen niederdimensionaler gekoppelter Elektronen-Kern-Dynamik

Albert, Julian January 2018 (has links) (PDF)
In the context of quantum mechanical calculations, the properties of non-adiabatic coupling in a small system, the Shin-Metiu model, is investigated. The transition from adiabatic to non-adiabatic dynamics is elucidated in modifying the electron-nuclear interaction. This allows the comparison of weakly correlated electron-nuclear motion with the case where the strong correlations determine the dynamics. The studies of the model are extended to include spectroscopical transitions being present in two-dimensional and degenerate four-wave mixing spectroscopy. Furthermore, the quantum and classical time-evolution of the coupled motion in the complete electron-nuclear phase space is compared for the two coupling cases. Additionally, the numerically exact electron flux within the weak coupling case is compared to the Born-Oppenheimer treatment. In the last part of the thesis, the model is extended to two dimensions. The system then possesses potential energy surfaces which exhibit a typical 'Mexican hat'-like structure and a conical intersection in the adiabatic representation. Thus, it is possible to map properties of the system onto a vibronic coupling (Jahn-Teller) hamiltonian. Exact wave-packet propagations as well as nuclear wave-packet dynamics in the adiabatic and diabatic representation are performed. / Im Rahmen quantenmechanischer Rechnungen werden die Eigenschaften nicht-adiabatischer Kopplungen in einem kleinen Modellsystem, dem Shin-Metiu Modell, untersucht. Die Fallunterscheidung zwischen adiabatischen und nicht-adiabatischen Prozessen wird durch eine Parameterisierung der Elektronen-Kernwechselwirkung realisiert. Dies ermöglicht den Vergleich zwischen korrelierter und unkorrelierter Elektronen-Kernbewegung. Innerhalb dieser zwei Extrema werden die Eigenfunktionen betrachtet und der Einfluss nicht-adiabtischer Kopplungen auf diese analysiert. Es wird gezeigt, dass im Fall einer schwachen Kopplung die Eigenfunktionen als adiabatisches Produkt dargestellt werden können, soweit die adiabatischen elektronischen Eigenfunktionen voneinander entkoppelt sind und unterschiedlichen elektronischen Charakter besitzen. Auf der anderen Seite sind die adiabatischen elektronischen Eigenfunktionen und die Vibrationseigenfunktionen im Bereich einer starken Kopplung miteinander gekoppelt, und es zeigt sich, dass die Eigenfunktionen in der diabatischen Darstellung eine zur adiabatischen äquivalente, aber intuitivere Beschreibung darstellen. Anhand dieser Ergebnisse wird eine Diabatisierung und ein Vergleich zwischen exakter Elektronen-Kernpropagation und der Propagation im diabatischen Bild durchgeführt. Dieser Vergleich ist in sehr guter Übereinstimmung und zeigt, dass der Ansatz der Diabatisierung für unkorrelierte Elektronen-Kernbewegungen hinreichend ist und gleichzeitig klassifiziert er die Wellepacket-dynamik im Bereich starker Kopplungen als diabatisch. Die theoretischen Untersuchungen des eindimensionalen Modells werden auf spektroskopische Übergänge erweitert, welche lineare und nichtlineare System-Feld Wechselwirkungen beinhalten. Ein Vergleich zwischen zweidimensionalen Spektren bezüglich schwach und stark gekoppelter Elektronen-Kern Dynamik zeigt, dass im Fall schwacher Kopplungen, die Spektren durch analoge Rechnungen im Rahmen der Born-Oppenheimer Näherung reproduzierbar sind. Es zeigt sich, dass diejenigen Teile des Spektrums, welche auf gleiche Weise nicht reproduzierbar sind, elektronisch gemischten Zuständen, aufgrund starker nicht-adiabtischer Kopplungen, zuzuordnen sind. Die Möglichkeit, das System zwischen schwacher und starker Kopplung zu variieren, erlaubt es Vibrationskohärenzen und elektronischen Kohärenzen in zweidimensionalen Spektren zu analysieren. Dazu werden die zweidimensionalen Spektren als Funktion der Populationszeit betrachtet. Es ergibt sich, dass im Fall schwacher Kopplungen die Kohärenzen während der Populationszeit Vibrationskohärenzen zugeordnet werden können. Im Gegensatz dazu ergeben sich im Bereich starker Kopplungen, aufgrund des gemischten elektronischen Charakters der Zustände, Kohärenzen vibronischer Art. Als weitere Methode wird die Degenerierte-Vier-Wellen-Mischen Spektroskopie (FWM) untersucht. Diese ist in der Lage Grundzustandsdynamiken und Dynamiken im angeregten Zustand separat zu verfolgen. Sowohl für negative als auch für positive Verzögerungszeiten werden die zwei verschiedenen Kopplungsszenarien untersucht und der Zusammenbruch dieser Methode bezüglich der nicht möglichen Trennung der Grundzustandsdynamik und Dynamik im angeregten Zustand innerhalb der adiabatischen Beschreibung betrachtet. Als weiterer Aspekt, wird die quantenmechanische und klassische Zeitentwicklung der gekoppelten Elektronen-Kernbewegung im vollständigen Phasenraum für verschiedene Kopplungsstärken verglichen. Im Fall schwacher Kopplung stimmt im Kurzzeitverhalten die klassische Berechung mit der quantenmechanischen gut überein. Dies kann auch im Fall starker Kopplungen gezeigt werden, was die weitere Schlussfolgerung zulässt, dass die Dynamik im Bereich starker Kopplungen hauptsächlich in einem diabatischen Zustand stattfindet. Das zeigt, dass die klassische Bewegung sehr ähnlich zu der diabatischen quantenmechanischen Bewegung verläuft. Als Konsequenz reproduziert eine klassische Bewegung im vollständigen Phasenraum eine quantenmechanische, bei der nicht-adiabatische Kopplungen stark involviert sind. Als letzte Betrachtung des eindimensionalen Shin-Metiu Modells, wird der Elektronenfluss im schwach gekoppelten Fall untersucht und der numerisch exakt berechnete Fluss mit dem in der Born-Oppenheimer Näherung verglichen. Innerhalb der üblichen Definition verschwindet der Elektronenfluss im Rahmen der Born-Oppenheimer Näherung. Durch die Verwendung der Kontinuitätsgleichung für den Elektronenfluss ergibt sich jedoch ein nicht-verschwindender Elektronenfluss. Weiter wurde ein Reflektionsprinzip hergeleitet, welches den Elektronenfluss auf den Kernfluss abbildet und umgekehrt. Zum Abschluss der Untersuchungen des eindimensionalen Shin-Metiu Modells wird das System auf zwei Dimensionen erweitert. Dabei zeigt sich, dass die adiabatischen Potentialflächen des Modells eine typische 'Mexican-hat' Topologie aufweist. Daraus ergibt sich, dass es möglich ist das System auf einen vibronischen (Jahn-Teller) Hamiltonian zurückzuführen. Im Zuge dessen wird das zweidimensionale System hinsichtlich der exakten Elektronen-Kerndynamik, sowie der Dynamik in den adiabatischen und diabatischen Anschauungen betrachtet. Die durchgeführten Rechnungen zeigen, dass das Passieren eines Wellenpaketes durch eine Konische Durchschneidung als eine diabatische Dynamik klassifiziert werden kann, wobei ein effizienter adiabatischer Populations-transfer stattfindet. Dieser Prozess kann sehr gut im diabatischen Bild reproduziert werden. Des Weiteren wird eine Wellenpaketdynamik um eine Konische Durchschneidung herum betrachtet und als adiabatische Dynamik klassifiziert. Der interessante Aspekt der geometrischen Phase, die mit dem Umrunden einer Konischen Durchschneidung assoziiert ist, wird mit der Rotation der elektronischen Wellenfunktion verknüpft. Zusätzlich wird hier das Auftreten der geometrische Phase in Autokorrelationsfunktionen und den daraus abgeleiteten Spektren charakterisiert. Die geometrische Phase wird zusätzlich als Mischungswinkel der Transformation zwischen dem diabatischen und adiabatischen Bild explizit berechnet. Zusammenfassend zeigen die Rechnugen an den verwendeten Modellsystemen viele fundamentale Aspekte der korrelierten Elektronen-Kerndynamik, obwohl sie auf lediglich zwei Partikel begrenzt sind.
9

Photoionisation von Biradikalen mit Synchrotronstrahlung / Photoionization of Biradicals with Synchrotron Radiation

Reusch, Engelbert January 2021 (has links) (PDF)
Die vorliegenden Arbeit behandelt VUV Valenz-Photoionisations-Experimente in der Gasphase. Zunächst wird die Photoionisation von stickstoffhaltigen Radikalen und deren Pyrolyseprodukten untersucht. Im Anschluss werden molekulare Biradikale betrachtet. Da in der Literatur bislang nur wenige solcher Biradikale als Intermediate experimentell zugänglich waren, war es das Ziel dieser Arbeit, neue reaktive Spezies dieser Substanzklassen in der Gasphase zu isolieren und deren Struktur, Eigenschaften und Reaktivität besser zu verstehen. Im Mittelpunkt stehen dabei Intermediate, die als echte Biradikale, Biradikaloide oder Triplett Carbene auftreten. Zu letzteren zählen das Methylbismut sowie die Pentadiinylidene. Biradikale bilden in Verbrennungsprozessen sehr effizient Ruß(vorläufer), was anhand des ortho-Benz-ins dargelegt wurde, indem dessen Pyrolyseprodukte charakterisiert und mögliche PAH-Bildungswege aufgezeigt wurden. Vakuum Flash Pyrolyse wurde verwendet, um in situ aus den geeigneten Vorläufermolekülen die radikalischen und biradikalischen Intermediate zu erzeugen. Während für biradikalische Zwischenstufen meist spezielle Verbindungen als Vorläufer synthetisiert werden müssen, waren die verwendeten Vorläufer für die stickstoffhaltigen Radikale kommerziell erhältlich. Die reaktiven Spezies wurden alle mittels monochromatischer VUV Synchrotronstrahlung an der Swiss Light Source in Villigen/ Schweiz ionisiert. Die Ionisationsereignisse wurden mit der Schwellenphotoelektronen-Photoionen-Koinzidenz (TPEPICO) Technik detektiert und ausgewertet. Anhand der resultierenden massenselektiven Schwellenphotoelektronenspektren wurden die Ionisierungsenergien der (Bi)radikale bestimmt und die Schwingungsstruktur der jeweiligen Kationen analysiert. Die erhaltenen Spektren und Daten wurden in Zusammenarbeit mit der theoretischen Chemie interpretiert. Wichtige Erkenntnisse • Es wurde die Ionisierungsenergie der 2-, 3- und 4-Picolylradikale auf 7.70\pm 0.02 eV, 7.59\pm 0.01 eV und 8.01\pm 0.01 eV bestimmt. Diese wurden in der Pyrolyse selektiv aus ihren zugehörigen Picolylaminen erzeugt. Zudem wurde analog zum Benzyl-Radikal für alle drei Radikale eine ausgeprägte Schwingungsprogression ermittelt, die der totalsymmetrischen Deformationsmode des aromatischen Rings entspricht. • Die Picolyl-Radikale dissoziieren in der Pyrolyse thermisch zu weiteren Produkten. Die Fragmentierung verläuft dabei isomerenunabhängig über ein stickstoffhaltiges Siebenringintermediat, dem Azepinyl-Radikal. Der Fragmentierungsmechanismus wurde mit dem von Benzyl verglichen. Die gewonnenen Erkenntnisse haben Relevanz für Verbrennungsprozesse, beispielsweise von Biokraftstoffen.Im ersten Schritt entstehen vier Isomere, das Cyclopenta-1,4-dien-1-carbonitril, das Cyclopenta-1,3-dien-1-carbonitril, das 2-Ethynyl-1H-pyrrol und das3-Ethynyl-1H-pyrrol mit den zugehörigen Ionisierungsenergien von 9.25\pm 0.02 eV, 9.14\pm 0.02 eV, 7.99\pm 0.02 eV und 8.12\pm 0.02 eV. Durch einen zweiten H-Verlust konnte das Cyanocyclopentadienyl-Radikal mit einer Ionisierungsenergie für die zwei niedrigsten Zustände im Kation mit 9.07\pm 0.02 eV (T0) und 9.21\pm 0.02 eV (S1) untersucht werden. Weitere Pyrolyseprodukte, deren Ionisierungsenergien bereits literaturbekannt sind und die bestätigt wurden, sind das Cyclopentadienyl-Radikal, das Cyclopenta-1,3-dien, das Propargyl-Radikal, das Penta-1,3-diin und das Cyanopropenyl. • Das ortho-Benz-in wurde pyrolytisch aus dem selbst synthetisierten Benzocyclobutendion erzeugt und ein Schwellenphotoelektronenspektrum frei von Störsignalen konnte aufgenommen werden. Mit Hilfe von Rechnungen aufCASPT2(11,14) Niveau, die neben dem elektronischen Übergang in den kationischen Grundzustand noch die Übergänge in zwei weitere angeregte kationische Zustände beinhalten, wurde die Ionisierungsenergie im Vergleich zu früheren Experimenten auf 9.51 eV revidiert. Eine verdrillte Geometrie für den kationischen Grundzustand konnte erstmals nachgewiesen werden. Zusätzlich wurden die offenkettigen Isomere cis- und trans-Hexa-1,5-diin-3-en im Spektrum detektiert und zugeordnet. • Die Auftrittsenergien aus der DPI des Vorläufermoleküls Benzocyclobutendion betragen für den ersten CO-Verlust 9.62\pm 0.05 eV und für den zweiten CO-Verlust 12.14\pm 0.10 eV. Damit konnte über einen thermochemischen Kreisprozess eine Bindungsdissoziationsenergie für die Ph-CO Bindung im Benzoylkation von 2.52 eV berechnet werden. • Verschiedenen Pyrolyseprodukte des ortho-Benz-ins, wie Ethin, Buta-1,3-diin, Benzol, Biphenylen und 2-Ethinylnaphthalin, werden entweder in bimolekularen Reaktionen gebildet oder ortho-Benz-in fragmentiert unimolekular zu diesen. Die beiden kompetitiven Reaktionspfade tragen zur PAH-Bildung des ortho-Benz-ins bei. • Die Triplett-Carbene Pentadiinyliden, Methylpentadiinyliden und Dimethylpentadiinyliden wurden als Pyrolyseprodukt aus ihren zugehörigen Diazovorläufern identifiziert und die Ionisierungsenergien mit 8.36\pm 0.03 eV, 7.77\pm 0.04 eV und 7.27\pm 0.06 eV bestimmt. Jede Methylierung stabilisiert folglich das Carben. Zusätzlich konnte ein weiteres C5H2 Isomer, das 3-(Didehydrovinyliden)cyclopropen, mit einer Ionisierungsenergie von 8.60\pm 0.03 eV charakterisiert werden. • Zwei bismuthaltige, reaktive Spezies, das Dimethylbismut-Radikal\cdot BiMe2 (IE = 7.27\pm 0.04 eV) und das Methylbismut-Carben :BiMe(IE = 7.88\pm 0.02 eV) wurden als Pyrolyseprodukte aus dem BiMe3 identifiziert. Beide Verbindungen zeigen eine ausgeprägte Schwingungsstruktur, die der Bi-C Streckschwingung zugeordnet wurde. Weiterhin wurden elementares Bismut Bi und das Bismut-Dimer Bi2 nachgewiesen. • Die homolytische Dissoziation der ersten Me2Bi-CH3 Bindung im BiMe3 wurde untersucht und eine BDE von 210\pm 7 kJ/ mol bestimmt. Sie liegt um +15 % bzw. +28 kJ/ mol über dem aus der Literatur abgeschätzten Wert. / The present thesis includes VUV valence shell photoionzation experiments in the gas phase. First, the photoionization of nitrogen containing radicals and their pyrolysis products was investigated. Afterwards, the focus was directed on molecular birad- icals. Since in literature so far only little experimental information exists on this class of compounds as reactive intermediates in gas phase, it was the intention of this work to understand the structure, the properties and the reactivity of them. In additon to the " true\ biradicals, intermediates like biradicaloids or triplet carbenes can be assigned to this class of compounds, the latter including the organometallic bismuthinidene :BiMe, pentadiynylidene and its methyl-substituted derivates. In combustion processes biradicals tend to form soot, a major environmental concern. In this context ortho-benzyne and its pyrolysis products were characterized and a possible PAH formation was shown. Vacuum ash pyrolysis was used to generate radicals and biradicals in situ from suitable precursors. While for the biradicals the precursors were compounds that had to be synthesized, for the nitrogen containing intermediates they were commercially available. The reactive species were ionized in photoionization experiments by monochromatic VUV synchrotron radiation at the Swiss Light Source in Villigen/ Switzerland. The ionization events were analyzed by using the threshold photoelectron photoion coincidence technique (TPEPICO). Based on the recorded ms-TPE spectra, ionization energies of the (bi)radicals were determined and the vibrational progression of the corresponding cations was charac- terized. Furthermore, in cooperation with the quantum chemistry the experimental spectra and results were interpreted and compared with calculated data sets.
10

On the Effects of Moisture on Polymer-Based Electrochromic Devices / Über die Auswirkung von Feuchtigkeit auf Polymer-basierte Elektrochrome Elemente

Macher, Sven January 2021 (has links) (PDF)
The present work builds on a conjugated electrochromic polymer with a highly transmissive and colorless bright state and its application in electrochromic devices. The main body of this work focuses on the investigation of the influence of moisture on electrochromic devices and solutions to overcome possible degradation of these devices due to moisture ingress. Firstly, a series of EDOT derivatives with a terminal double bond in the lateral sidechain to potentially achieve a highly transmissive and fully colorless bright state was investigated. All of the EDOT derivatives were electrochemically polymerized and characterized by means of (in-situ) spectroelectrochemistry. The results highlight the dramatic influence of the terminal double bond on the improved visible light transmittance and color neutrality in the bright state. After detailed evaluation and comparison, the best performing compound, which contains a hexenyl sidechain (PEDOT-EthC6), was scaled-up by changing the deposition technique from an electrochemical to a chemical in-situ polymerization process on a R2R-pilot line in an industrially relevant environment. The R2R-processed PEDOTEthC6 half-cells were characterized in detail and provide enhanced electrochromic properties in terms of visible light transmittance and color neutrality in the bright state as well as short response times, improved contrast ratio, coloration efficiency and cycling stability (10 000 cycles).[21] In a second step, the novel PEDOT-EthC6 electrochromic polymer was combined with a Prussian Blue counter electrode and a solid polymer electrolyte to form an all-solid-sate ECDs based on complementary switching electrodes and PET-ITO as flexible substrates. The fabricated ECDs were optically and spectroelectrochemically characterized. Excellent functionality of the S2S-processed flexible ECDs was maintained throughout 10 000 switching cycles under laboratory conditions. The ECDs offer enhanced electrochromic properties in terms of visible light transmittance change and color neutrality in the bright state as well as contrast ratio, coloration efficiency, cycling stability and fast response times. Furthermore, the final device assembly was transferred from a S2S-process to a continuous R2R-lamination process.[238] In a third step, the PEDOT-EthC6/PB-based ECDs were submitted to conscious environmental aging tests. The emphasis of the research presented in this work, was mainly put at the influence of moisture and possible failure mechanisms regarding the PEDOT-EthC6/PB based ECDs. An intense brown coloration of the electrodes was observed while cycling the ECDs in humid atmospheres (90% rH) as a major degradation phenomenon. The brown coloration and a thereby accompanied loss of conductivity of the PET-ITO substrates was related to significant degradation of the ITO layers, inserted as the conductive layers in the flexible ECDs. A dissolution of the ITO thin films and formation of metallic indium particles on the surface of the ITO layers was observed that harmed the cycling stability enormously. The conductive layers of the aged ECDs were investigated by XRD, UV-Vis, SEM and spectroelectrochemical measurements and validated the supposed irreversible reduction of the ITO layers.[279] In the absence of reasonable alternatives to PET-ITO for flexible (R2R-processed) ECDs, it is also important to investigate measures to avoid the degradation of ECDs. This is primarily associated with the avoidance of appropriate electrode potentials necessary for ITO reduction in humid atmospheres. As an intrinsic action point, the electrode potentials were investigated via electrochemical measurements in a three-electrode setup of an all-solid-state ECD. Extensive knowledge on the electrode potentials allowed the voltage-induced degradation of the ITO in flexible ECDs to be avoided through the implementation of an unbalanced electrode configuration (charge density ratio of working and counter electrode). It was possible to narrow the overall operational voltage window to an extent in which irreversible ITO reduction no longer occurs. The unbalanced electrode configuration lead to an improved cycling stability without harming other characteristics such as response time and light transmittance change and allows ECD operation in the presence of humidity.[279] The avoidance of the mentioned degradation phenomena is further associated with appropriate sealing methods and materials as well as appropriate electrode and device fabrication processes. Since a variety of sealing materials is commercially available, due to the commercial launch of organic photovoltaic (OPV) and light emitting diodes (OLEDs), the focus in the present work was put to water-free electrode fabrication. As an extrinsic action point, a novel preparation method of a nanoscale PEDOT-EthC6 dispersion based on organic solvents is presented here in a final step. The water-free processing method gives access to straightforward printing and coating processes on flexible PET-ITO substrates and thus represents a promising and simplified alternative to the established PEDOT:PSS. The resulting nano-PEDOT-EthC6 thin films exhibit enhanced color neutrality and transmissivity in the bright state and are comparable to the properties of the in-situ polymerized PEDOT-EthC6 thin films.[280] / Die vorliegende Arbeit beruht auf einem konjugierten elektrochromen Polymer mit hochtransmissivem und farblosem Hellzustand sowie dessen Anwendung in elektrochromen Elementen. Der Hauptteil die-ser Arbeit konzentriert sich auf den Einfluss von Feuchtigkeit auf elektrochrome Elemente sowie Lösun-gen, um einer möglichen Degradation dieser Systeme aufgrund der Einwirkung von Feuchtigkeit entge-genzuwirken. In einem ersten Schritt wurde eine Reihe von EDOT-Derivaten mit terminalen Doppelbindung in einer lateralen Seitenkette untersucht, um einen hochtransmissiven und vollständig farblosen Hellzustand zu erreichen. Alle EDOT-Derivate wurden elektrochemisch polymerisiert und mittels (in-situ) spektroelekt-rochemischer Messungen charakterisiert. Die Ergebnisse unterstreichen den dramatischen Einfluss der terminalen Doppelbindung auf die verbesserte Transmission und Farbneutralität im Hellzustand. Nach einer detaillierten Bewertung und entsprechendem Vergleich wurden die Dünnschichten der Verbin-dung mit den besten Eigenschaften, welche eine Hexenylseitenkette (PEDOT-EthC6) enthält, hochska-liert. Dazu wurde die elektrochemische Abscheidung durch einen chemischen in-situ-Polymerisationsprozess ersetzt. Dies ermöglicht die Abscheidung elektrochromer Dünnschichten im großen Maßstab auf einer R2R-Beschichtungsanlage. Die mittels R2RBeschichtung abgeschiedenen PE-DOT-EthC6-Dünnschichten wurden daraufhin detailliert charakterisiert und zeigen verbesserte elektro-chrome Eigenschaften hinsichtlich visueller Transmission und Farbneutralität im Hellzustand, kurze Schaltzeiten, ein verbessertes Kontrastverhältnis sowie verbesserte Färbeeffizienz und Zyklenstabilität (10 000 Zyklen).[21] Im zweiten Schritt wurden PEDOT-EthC6-Halbzellen mit Preußisch Blau-Gegenelektroden und einem festen Polymerelektrolyten kombiniert und ein Festkörper- ECD auf Basis koplementär-färbender Elekt-roden und flexiblen PET-ITO-Substraten realisiert. Die hergestellten ECDs wurden optisch und (spektro-)elektrochemisch charakterisiert. Die Funktionalität der S2S-assemblierten flexiblen ECDs wurde über 10 000 Schaltzyklen unter Laborbedingungen getestet. Die ECDs bieten verbesserte elektrochrome Eigenschaften hinsichtlich der visuellen Transmission und Farbneutralität im Hellzustand sowie des Kon-trastverhältnisses, der Färbeeffizienz, Zyklenstabilität und Schaltzeit. Darüber hinaus wurde die S2S-Laminierung der ECDs in einen kontinuierlichen R2R-Laminierprozess übertragen.[238] Dann wurden die PEDOT-EthC6/PB-basierten ECDs kontrollierten Alterungstests unterzogen. Der Schwerpunkt dieser Arbeit lag hauptsächlich auf dem Einfluss von Feuchtigkeit und den daraus resultie-renden Degradationsmechanismen des PEDOT-EthC6/PB-Systems. Während die ECDs in feuchter At-mosphäre (90 % rH) zyklisiert wurden, konnte eine intensive Braunfärbung der Elektroden beobachtet werden. Die braune Färbung und ein damit einhergehender Verlust der Leitfähigkeit wurde auf eine signifikante Degradation der ITO-Schichten zurückgeführt, die als leitfähige Schichten in den flexiblen ECDs Verwendung fanden. Die Auflösung der ITO-Dünnschichten sowie die Bildung von metallischen Indiumpartikeln auf der Oberfläche der ITO-Schichten wurde beobachtet und als Ursache für die ver-minderte Zyklenstabilität herangezogen. Die leitfähigen Schichten der gealterten ECDs wurden durch XRD-, UV-Vis-, REM- und (spektro-) elektrochemische Messungen untersucht und die vermutete irre-versible Reduktion der ITO- Schichten bestätigt.[279] Mangels Alternativen zu PET-ITO für flexible (R2R-prozessierte) ECDs ist es wichtig, Maßnahmen zur Vermeidung der Degradation von ECDs zu untersuchen. Dies ist in erster Linie mit der Vermeidung ge-eigneter Elektrodenpotentiale verbunden, die für die Reduktion von ITO in feuchter Atmosphäre erfor-derlich sind. Als intrinsische Maßnahme wurden die Elektrodenpotentiale durch elektrochemische Mes-sungen in einem Drei-Elektroden-Aufbau eines Festkörper-ECD untersucht. Aufgrund der umfassende Kenntnis der Elektrodenpotentiale konnte die spannungsinduzierte Degradation der enthaltenen ITO-Schichten durch die Implementierung einer unbalancierten Elektrodenkonfiguration (Ladungsdichte-verhältnis von Arbeits- und Gegenelektrode) vermieden werden. Es war dadurch möglich, das gesamte Spannungsfenster zum Betrieb des ECD so weit einzuschränken, dass keine irreversible ITO-Reduktion mehr auftrat. Die unbalancierte Elektrodenkonfiguration führt zu einer verbesserten Zyklenstabilität, ohne andere Eigenschaften wie Schaltzeit oder visuellen Transmissionshub zu beeinträchtigen und er-möglicht daher den Betrieb von ECDs auch in feuchter Atmosphäre.[279] Die Vermeidung der genannten Degradationsphänomene ist ferner mit geeigneten Versiegelungsver-fahren und -materialien sowie geeigneten Elektroden- und Assemblierungsverfahren möglich. Da auf-grund der kommerziellen Einführung von organischer Photovoltaik (OPV) und organischer Leuchtdio-den (OLEDs) eine Vielzahl von Versiegelungsmaterialien kommerziell erhältlich ist, lag der Schwerpunkt der vorliegenden Arbeit auf der Herstellung wasserfreier Elektroden. Als extrinsische Maßnahme wurde in einem letzten Schritt eine neuartige Herstellungsmethode für eine nanoskaligen PEDOT-EthC6-Dispersion auf Basis organischer Lösungsmittel entwickelt. Die wasserfreie Verarbeitungsmethode er-möglicht einfache Druck- und Beschichtungsprozesse auf flexiblen PET-ITO-Substraten und stellt somit eine vielversprechende und vereinfachte Alternative zu etabliertem PEDOT:PSS dar. Die resultierenden PEDOT-EthC6-Schichten zeigen im Hellzustand ebenfalls eine verbesserte Farbneutralität sowie visuelle Transmission und sind vergleichbar mit den Eigenschaften der in-situ-polymerisierten PEDOT-EthC6-Schichten.[280]

Page generated in 0.6302 seconds