• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 21
  • 4
  • 1
  • Tagged with
  • 85
  • 52
  • 17
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse électrochimique de nanofils de Bi2Te3 dans des matrices poreuses en polycarbonate / Electrochemical synthesis of Bi2Te3 nanowires in polycarbonate porous templates

Frantz, Cédric 10 November 2011 (has links)
Le tellurure de bismuth (Bi2Te3) est le matériau thermoélectrique de référence à température ambiante. De ses propriétés thermiques et électroniques se définit son facteur de mérite qui permet d’évaluer son efficacité. Parmi les voies récentes visant l’amélioration de ce facteur, la nanostructuration apparait comme une approche prometteuse. Des réseaux de nanofils de Bi2Te3 ont été élaborés par électrodéposition dans les pores de membranes en polycarbonate, de 30 μm de longueur et de 30 à 120 nm de diamètre. Le projet visant l’utilisation de membranes remplies comme éléments thermoélectriques, les travaux se sont focalisés sur trois aspects. Tout d’abord, le taux de remplissage des membranes a été amélioré via l’ajout de 50 % v/v DMSO dans l’électrolyte, permettant d’augmenter cette valeur de 40% à 80%. La seconde partie a concerné l’étude des systèmes électrochimiques et les pics voltammétriques ont été identifiés ; la présence de DMSO implique un décalage négatif des potentiels de déposition tandis que l’emploi des membranes entraîne un décalage positif. La connaissance de ces systèmes a permis de maîtriser la composition des dépôts. La morphologie, la microstructure et la composition des nanofils ont été étudiées par microscopie électronique en transmission. La composition est homogène sur la quasi-totalité des nanofils sauf à leurs deux extrémités. Toutefois, ces variations localisées peuvent être réduites en ajustant le potentiel de déposition. Les structures sont polycristallines et fortement orientées perpendiculairement aux plans (01.5). Finalement, des mesures thermoélectriques ont été réalisées sur des réseaux de nanofils et sur des nanofils isolés / Bismuth telluride (Bi2Te3) is the thermoelectric reference material at room temperature. Its figure of merit is defined from its thermal and electronic properties and allows estimating its efficiency. Among recent ways to improve this factor, nanostructuration appears to be a promising approach. Bi2Te3 nanowire arrays have been obtained by electrochemical deposition within the pores of polycarbonate membranes of 30 μm length and homogeneous diameter from 30 nm to 120 nm. The project aims the use of filled membranes as efficient thermoelectric elements and the studies were focused on three main aspects. First of all, the filling ratio of the porous volume has been improved by adding 50 % v/v of DMSO in the electrolyte, allowing raising this value from 40 % to 80 %. The second part concerned the electrochemical behavior indepth studies. The identified voltammetric peaks showed that the DMSO leads to a negative shift of the deposition potential whereas the membrane involves a positive shift. The understanding of electrochemical systems offered the opportunity to monitor the nanowire chemical composition. The nanowire morphology, microstructure and composition were mainly studied by Transmission Electron Microscopy. Calibrated Energy Dispersive X-ray Spectroscopy revealed a homogeneous composition along the nanowires excepted at both their extremities. However, these localized deviations can be partially inhibited by adjusting the deposition potential. Diffraction analyses revealed textured polycrystalline structures with strong orientation perpendicular to (01.5) planes. Finally, thermoelectric measurements were carried out for nanowire arrays and for individual nanowires
2

Elaboration de super-réseaux de boîtes quantiques à base de SiGe et développement de dispositifs pour l'étude de leurs propriétés thermoélectriques

Hauser, David 21 January 2011 (has links) (PDF)
L'utilisation de dispositifs thermoélectriques à base de films minces en SiGe est envisagée dans de nombreuses applications comme la micro-génération de puissance ou le refroidissement localisé de composants microélectroniques. Le SiGe possède en effet un net avantage en terme d'integrabilite mais souffre cependant d'un déficit en terme de performances. Dans le cadre de cette thèse, nous nous sommes intéressés à la nanostructuration de ce matériau en super-réseau de boîtes quantiques (SRBQ), celle-ci devant permettre une forte augmentation de son facteur de mérite, rendue possible par une forte altération du transport thermique à l'échelle nanométrique. La réalisation, par un outil CVD de type industriel, à 750 °C, de SRBQ monocristallins lourdement dopés est présentée à partir d'analyses morphologiques (AFM), structurales (MEB, MET) et chimiques (SIMS). Des phénomènes de forts échanges Si-Ge pendant la croissance sont notamment mis en évidence et corrélés avec des mesures de conductivité thermique qui ne démontrent pas un effet significatif des boîtes sur le transport thermique. L'élaboration de structures polycristallines originales est également présentée. Enfin, la question cruciale de la détermination du facteur de mérite est abordée, notamment concernant les problèmes d'incertitudes de mesure. Une
3

Synthèses et caractérisations de matériaux thermoélectriques nanostructurés / Synthesis and characterizations of nanostructured thermoelectric materials

Bude, Romain 16 April 2018 (has links)
Les marchés de la thermoélectricité sont en pleine expansion avec l’intérêt croissant pour la récupération d’énergie thermique ou encore pour la gestion de la température de composants électroniques. En dépit de ses nombreux avantages, le développement de cette technologie est freiné par les performances des matériaux. Une voie d’amélioration identifiée est leur nanostructuration afin d’en diminuer la conductivité thermique de réseau.Dans ce travail de thèse, cette voie est appliquée au tellurure de bismuth, matériau connu pour posséder les meilleures performances autour de la température ambiante. Les matériaux sont obtenus par synthèse de nanoparticules en solution avant d’être mis en forme par pressage à chaud.Une première étude est réalisée sur la recherche d’un optimum de la taille de grain dans le massif. On montre que le contrôle des conditions de synthèse permet le contrôle des dimensions des nanoparticules. Par ailleurs, les analyses structurales et fonctionnelles des massifs après densification montrent que la variation de la taille initiale des particules permet le contrôle de la microstructure et des propriétés detransport des massifs.Une seconde étude porte sur la recherche d’un optimum en composition des matériaux Bi2Te3-xSex. Les analyses morphologiques mettent en évidence une structure complexe et particulière, laissant apparaitre la présence de trois phases dans les massifs.Les matériaux obtenus par cette méthode de synthèse possèdent a priori des propriétés de transport anisotropes. La caractérisation de leurs performances thermoélectriques est donc difficile. Plusieurs techniques de caractérisation sont mises en oeuvre afin de mieux connaitre leurs conductivités thermiques. Celles-ci sont faibles, ce qui montre l’intérêt de l’approche. Toutefois, leur conductivité électrique est plus basse que leurs homologues obtenus par des techniques plus conventionnelles. On montre néanmoins que l’optimisation des conditions de synthèse des particules entrant dans la composition des massifs alliés permet d’améliorer leurs propriétés électriques et donc leurs performances thermoélectriques / The global thermoelectric markets are in expansion with a growing interest for the energy harvesting or the thermal management of electronic components. Despite numerous advantages, this technology development is limited by the materials performances. A way to improve them is to use nanostructures in order to decrease the lattice thermal conductivity.In this work, this approach is applied to bismuth telluride, material well known for its high performance around room temperature. Materials are obtained from solution synthesis of nanoparticles before hot press compaction.A first study focuses on the determination of an optimal grain size in the bulk materials. It is shown that control over the synthesis parameters allows control on the size of nanoparticles.Moreover, structural and physical analyses on the bulks after sintering show that the change of thesynthesis parameters allows control over the microstructure and thermoelectric properties of the bulks.A second study is based on the study of an optimal composition of Bi2Te3-xSex materials. Morphological analysis show a specific and complex structure with three phases in the bulks.It is postulated that these materials should have anisotropic transport properties. Consequently, their characterizations are difficult. Different characterization techniques are used in order to have a better understanding of their thermal conductivities. Thermal conductivity of the bulks is found low which confirm the interest of this approach. However the electrical conductivity is lower than the one of the materials obtained by more conventional methods. We show that the synthesis parameters of the particles can be optimized to increase the thermoelectric performances of the bulk materials.
4

High performance polymer and polymer/inorganic thermoelectric materials / Polymères et polymères/inorganiques matériaux thermoélectriques de haute performance

Petsagkourakis, Ioannis 08 December 2016 (has links)
Les polymères conducteurs ont attiré l'attention de la communauté scientifique en raison de leur utilisation potentielle dans les applications thermoélectriques [1, 2]. En particulier, il a été prouvé qu'un paramètre important pour accorder les propriétés thermoélectriques et le comportement de transport de charge du polymères, est la forme du DOS dans le bord de bande. Dans la présente étude, la corrélation entre la structure du matériau, la structure électronique et les propriétés électroniques / thermoélectriques, est étudiée par une conception soigneuse et rigoureux du matériau, vers un matériau polymère, thermoélectrique efficace. En outre, les dispositifs hybrides ont été fabriqués comme un moyen alternatif pour améliorer encore l'efficacité thermoélectrique du matériau. / Conducting polymers (CPs) have recently gained the attention of the scientific community due to their prospective use in thermoelectric applications [1,2]. Particularly, it has been proven that an important parameter for tuning the thermoelectric properties and the charge transport behavior of the CP is the shape of the DOS in the band edge, where a more steep band edge would be translated in a semi-metallic behavior for the system, with higher thermoelectric efficiencies. In the present study the correlation between material structure, electronic structure and electronic/ thermoelectric properties, is investigated through careful material design, towards an efficient thermoelectric polymer material. Additionally, the hybrid devices were fabricated as an alternative means to further enhance the thermoelectric efficiency of the material.
5

Élaboration et caractérisation de composites hybrides thermoélectriques / Synthesis and characterisation of thermoelectric composites

Papavero, Amory 11 July 2012 (has links)
Élaboration et caractérisation de composites hybrides thermoélectriques / Synthesis and characterisation of thermoelectric composites
6

Électrodéposition et caractérisations de nanofils thermoélectriques Bi0,5Sb1,5Te3 dans des matrices mésoporeuses en polycarbonate / Electrodeposition and characterizations of Bi0,5Sb1,5Te3 thermoelectric nanowires in polycarbonate mesoporous templates

Schoenleber, Jonathan 09 September 2014 (has links)
Les chalcogénures de bismuth sont les matériaux thermoélectriques de référence à température ambiante. La nanostructuration de ces matériaux, en particulier sous forme de nanofils, est une approche prometteuse pour l’amélioration de leur rendement, qui reste à l’heure actuelle limité. L’objectif de ce travail est l’électrodéposition de nanofils ternaire Bi0,5Sb1,5Te3, de type p, au sein de matrices mésoporeuses en polycarbonate. Préalablement, une étude comparative des coefficients de diffusion a été réalisée pour chacun des cations BiIII, SbIII et TeIV sur électrode planaire. Ce travail a été prolongé par l’analyse des phénomènes de diffusion ayant lieu durant la croissance de chacun des éléments dans les matrices assimilables à un réseau d’ultramicro-électrodes encastrées. En considérant un régime diffusionnel, les concentrations en cations dans les électrolytes ont été ajustées en conséquence puis des études analytiques des différents systèmes électrochimiques présents ont été réalisées. Ainsi différents potentiels de déposition ont été définis conduisant à l’élaboration de nanofils BixSbyTez. La composition, la morphologie et la cristallinité des nanostructures a été systématiquement étudiée, par Microscopie Electronique en Transmission équipé d’un système EDS, pour trois types de membranes possédant des pores de diamètres et densités différents. Il en ressort que la composition visée Bi0,5Sb1,5Te3 a pu être approchée pour des électrolytes enrichis en antimoine. Dans les meilleures conditions de synthèse, les nanofils sont polycristallins et fortement texturés avec des défauts locaux majoritaires de type macles. Ces échantillons ont également été caractérisés de sorte à mesurer le coefficient Seebeck, la résistance interne et la puissance de sortie des membranes remplies en vue d’une utilisation comme élément thermoélectrique dans cette configuration. Il apparait que les nanofils, électrodéposés en matrices commerciales, sont de type p avec des coefficients Seebeck avoisinant +300 µV/K. Il en ressort également que la résistance interne est majoritairement gouvernée par le taux de remplissage des matrices mésoporeuses / Bismuth chalcogenides are the best thermoelectric materials at room temperature. Nanostructuring is a promising approach to improve their efficiency which is currently limited. The aim of this work is the template synthesis of p-type Bi0,5Sb1,5Te3 nanowires by electrodeposition in polycarbonate mesoporous membranes. Firstly, comparative study of diffusion coefficients of BiIII, SbIII and TeIV cations was done on planar electrode. More specifically, the diffusion processes occurring during the deposition into the pores were studied, the membranes acting as an array of recessed ultramicro-electrodes. The cation concentrations in the synthesis electrolytes were then adjusted and related electrochemical systems have been investigated. Consequently, several deposition potentials have been defined leading to the synthesis of BixSbyTez nanowires. Composition, morphology and crystallinity of the nanostructures were systematically studied by Transmission Electron Microscopy equipped with an EDS system, for three types of membranes with different pore diameters and densities. The targeted composition Bi0,5Sb1,5Te3 was almost obtained for antimony enriched electrolytes. In best synthesis conditions, nanowires are polycrystalline and textured. High Resolution TEM images exhibit local defects like twin boundaries. Moreover, thermoelectric properties of array of nanowires were investigated. In particular the Seebeck coefficient, the internal resistance and the output power were studied as function of synthesis parameters. It appears that nanowires fabricated in commercial membranes exhibit positive Seebeck coefficients of about +300 µV/K. The results show that internal resistances are governed by the filling rate of mesoporous membranes
7

Transport dans les composés thermoélectriques skutterudites de type R(x)Co(4-y)Ni(y)Sb(12) (R=Nd, Yb et In) / Transport in thermoelectric skutterudite compounds RxCo4-yNiySb12 (R=Nd, Yb AND In)

Da Ros, Véronique 30 May 2008 (has links)
Dans le cadre du regain d’activité pour la thermoélectricité, les matériaux skutterudite suscitent un vif intérêt du fait de leurs performances dans la gamme de température 400-800 K. L’étude des propriétés structurales et thermoélectriques de triantimoniures de cobalt partiellement remplies au néodyme, à l’ytterbium ou à l’indium, et partiellement substituées au nickel a ainsi été menée. Des composés denses et homogènes ont été obtenus via une technique de métallurgie des poudres. L’analyse conjointe des résultats de diffraction des rayons X et de microsonde de Castaing a permis de déterminer les limites de solubilité x des éléments remplisseurs dans Co4Sb12 : ainsi, xNd ~ 0,05 – 0,06, et xYb ~ xIn ~ 0,18. Dans le cas de l’ytterbium, nous avons montré par diffraction de neutrons sur poudre que ces atomes sont localisés au centre des cavités de la structure et qu’ils présentent un paramètre de déplacement atomique élevé. Les propriétés électriques (résistivité électrique, pouvoir thermoélectrique, effet Hall) et thermiques (conductivité thermique) ont été scrutées sur une vaste gamme de température (2 à 800 K). L’analyse des mesures, entre 2 et 800 K, a montré que plus la teneur en élément inséré est élevée, plus celui-ci a un impact bénéfique sur les propriétés thermoélectriques. Les performances maximales atteintes s’élèvent ainsi à ZT ~ 0,3 pour le composé Nd0,052Co4Sb12 à 800 K, ZT ~ 0,9 pour le composé In0,180Co4Sb12 à 710 K et ZT ~ 1 pour le composé Yb0,180Co4Sb12 à 800 K. L’optimisation de ces matériaux a alors été considérée via la substitution partielle du cobalt par du nickel. Nous avons montré que la présence de nickel augmente la concentration de porteurs de charge et modifie les mécanismes de diffusion onde ceux-ci. Dans le cas des composés partiellement remplis au néodyme, son impact sur les propriétés thermoélectriques est très bénéfique. Pour les composés à l’indium et à l’ytterbium, des compensations de l’influence du nickel sur les différents paramètres s’opèrent si bien que les performances thermoélectroniques globales du matériau ne présentent pas d’amélioration significative / In a context of renewed interest in thermoelectric compounds, skutterudite materials are an interesting target because of their good performances in the temperature range 400-800 K. The study of structural and thermoelectric properties of cobalt triantimonides partially filled with neodymium, ytterbium and indium, and partially substituted with nickel, has been undertaken. Dense and homogeneous samples have been obtained using a powder metallurgy technique. The joint analysis of X-ray diffraction and electroprobe microanalysis led to the determination of the solubility limit of the filler elements: xNd ~ 0,05 – 0,06, and xYb ~ xIn ~ 0,18. For ytterbium, we were able to prove by powder neutron diffraction technique that the atoms are localized at the centre of the structure and that they have a very high atomic displacement parameter. Electrical properties (electrical resistivity, thermal conductivity, Hall effect) and thermal properties (thermal conductivity) have been investigated on a very large range of temperature (2 to 800K). The exploitation of the measurements showed that the higher the quantity of each insertion element, the greater its beneficial impact on the thermoelectric properties. The best performances have been reached with ZT ~ 0,3 for Nd0,052Co4Sb12 at 800 K, ZT ~ 0,9 in the case of In0,180Co4Sb12 at 710 K and ZT ~ 1 for Yb0,180Co4Sb12 at 800 K. An optimisation was considered using the partial substitution of cobalt by nickel. The impact of nickel on the thermoelectric performances on ternary compounds was very different depending on the element. In the case of neodymium, the presence of nickel modified the diffusion mechanism of the carriers and its impact was very beneficial. For indium and ytterbium, the impact of nickel did not lead to any significant improvement
8

Contribution à l'électrodéposition en milieu liquide ionique de tellurure de bismuth en vue de son dopage / Contribution to electrodeposition from ionic liquids of bismuth telluride with the view of its doping

Szymczak, Jonathan 22 July 2013 (has links)
La thermoélectricité connait un essor important depuis une dizaine d'années. Réservés actuellement à des marchés de niche tels que l'informatique ou l'aérospatiale, les dispositifs à base de matériaux thermoélectriques pourraient trouver de nombreuses applications dans les véhicules afin de récupérer la chaleur dissipée. Les meilleurs matériaux pour une utilisation à des températures proches de l'ambiante sont les composés de la famille du tellurure de bismuth, Bi2Te3. Le but de ce travail de doctorat était la synthèse par voie électrochimique de Bi2Te3 dopé. La réduction des terres rares étant impossible en milieu aqueux, les liquides ioniques possédant une grande stabilité électrochimique, ont été choisis comme électrolytes. La première partie du travail de thèse a consisté à élaborer le liquide ionique le mieux adapté permettant la réduction électrochimique du lanthane(III). Parmi les liquides ioniques testés, le bis(trifluorométhylsulfonyl)imidure d'1-éthyl-1-octylpipéridinium (EOPipTFSI) a été choisi. Nous avons ensuite défini la composition de l'électrolyte permettant d'atteindre une solubilité élevée des sels précurseurs en réalisant un mélange binaire avec EOPipBr. Les comportements électrochimiques de mélanges d'ions Bi(III)/Te(IV) ont été étudiés. Le système électrochimique obtenu est complexe. Cependant, une étude analytique approfondie a permis d'aboutir à la synthèse de Bi2Te3. Dans une dernière partie, nous nous sommes intéressés au système électrochimique Te(IV)/Te(0), l'étude des dépôts de Te(0) ayant révélé qu'ils étaient composés de nanofils monocristallins. L'influence de différents paramètres sur le diamètre et la morphologie des dépôts a été étudiée / Thermoelectricity has soared up for few years. Currently reserved to niche markets such as informatics or aerospace, devices based on thermoelectric materials could be used in vehicles in order to harness wasted heat. However, the performance of these materials is insufficient for scale up. Among thermoelectric materials, bismuth telluride (Bi2Te3) compounds are the most efficient at room temperature. The purpose of this work was the electrochemical synthesis of doped-Bi2Te3. Rare earth elements being hardly reducible, aqueous medium is unsuitable for their electrodeposition that's why ionic liquids were chosen as electrolytes because of their large electrochemical window. The first part of this PhD work consisted in elaborating the most suitable ionic liquid allowing lanthanum(III) electrochemical reduction. Among ionic liquids tested, 1-ethyl,1-octylpiperidinium bis(trifluoromethylsulfonyl)imide (EOPipTFSI) was selected. In a second part, we defined a bath composition allows reaching a high solubility of precursor salts by using a binary mixture EOPipTFSI:EOPipBr, EOPipBr being the intermediate product of EOPipTFSI synthesis. Then, electrochemical behaviors of several Bi(III)/Te(IV) mixtures were studied. The electrochemical system is complex. Nevertheless, this detailed analytical study led to Bi2Te3 electrochemical synthesis. Finally, the Te(IV)/Te(0) electrochemical system was more deeply studied, the analysis of Te deposits revealed the coatings were composed of single crystalline nanowires. The influence of experimental on nanowire diameter and coatings morphology was studied. These nanowires could be of great interest to prepare Te-Bi core-shell nanostructures
9

Structure and properties of BiCuSeO-type thermoelectric materials / Structure et propriétés des matériaux thermoélectrique de type BiCuSeO

Li, Jing 24 July 2015 (has links)
La conversion d’énergie par effet thermoélectrique (TE), qui peut être utilisée pour convertir de la chaleur perdue en électricité, a reçu une attention soutenue ces dernières décennies. L’efficacité d’un système TE est caractérisé par le facteur de mérite adimensionnel, ZT=(S²σ/κ)T, où S, σ, κ, et T sont respectivement le coefficient Seebeck, la conductivité électrique, la conductivité thermique et la température absolue. Récemment, les matériaux à base de chalcogénures de cuivre ont attiré un intérêt au sein de la communauté de la thermoélectricité du fait de leur conductivité thermique faible, qui conduit à des propriétés thermoélectriques prometteuses. BiCuSeO et BaCu2Se2 sont deux de ces matériaux. Ils possèdent une conductivité thermique intrinsèquement très faible et un coefficient Seebeck élevé. Mais leur conductivité électrique est faible, ce qui limite l’amélioration de leurs propriétés thermoélectriques.Dans cette thèse, la conductivité électrique de BiCuSeO est améliorée par dopage par Ba et par texturation. Se est substitué à S dans BiCuSeO pour réduire les coûts et diminuer la conductivité thermique. Un dopage par Na est effectué dans BaCu2Se2 pour augmenter sa concentration de porteurs et améliorer sa conductivité électrique. / The thermoelectric (TE) energy conversion technology, which can be used to convert wasted heat into electricity, has received much attention in the past decade. The efficiency of TE devices is characterized by the dimensionless figure of merit ZT=(S²σ/κ)T, where S, σ, κ, and T are the Seebeck coefficient, the electrical conductivity, the thermal conductivity, and the absolute temperature, respectively.Recently, copper chalcogenides based materials have attracted extensive interest in the thermoelectric community due to low thermal conductivities, which lead to the promising excellent thermoelectric properties. BiCuSeO and BaCu2Se2 are two of them. They exhibit intrinsically very low thermal conductivity and large Seebeck coefficient. But their electrical conductivity is low, limiting the enhancement of their thermoelectric properties.In this thesis, Ba doping and texture are taken out in BiCuSeO to improve its electrical conductivity. Se is substituted by S in BiCuSeO to decrease its price and decrease its thermal conductivity. Na doping is taken out in BaCu2Se2 to increase its carrier concentration and improve its electrical conductivity.
10

Matériaux à base de nanocristaux semi-conducteurs de chalcopyrite pour la conversion thermoélectrique / Semiconducting chalcopyrite nanocrystals based materials for thermoelectric conversion

Vaure, Louis 27 January 2017 (has links)
Cette thèse présente l’étude de nanocristaux semi-conducteurs pour leur intégration dans des dispositifs de conversion thermoélectrique. Ce phénomène permet de générer un courant à partir d’une différence de température entre deux faces, reliées par deux pieds conducteurs de charges. Les matériaux les plus efficaces à température ambiante sont basés sur le tellurure de bismuth Bi2Te3, qui est toxique et coûteux. Une étude théorique et bibliographique, portant sur les grandeurs caractéristiques de la conversion thermoélectrique, est réalisée. Elle permet de déterminer les matériaux d’intérêt en fonction de leur coût et de leur efficacité, que l’on peut optimiser à travers différents paramètres d’influence. La chalcopyrite, CuFeS2, présente des propriétés intéressantes en thermoélectricité, et offre une alternative intéressante aux matériaux classiques, car composée d’éléments abondants et non-toxiques. La synthèse par voie chimique choisie permet de contrôler la composition du matériau, et d’obtenir des nanocristaux de taille contrôlée entre 30 et 50 nm, pour diffuser les phonons dans le matériau et diminuer sa conductivité thermique. La thèse s’oriente autour de l’étude de ces nanocristaux semi-conducteurs de CuFeS2, organisée en deux parties principales.La première partie décrit la synthèse par voie chimique des nanocristaux et leur étude structurale. Deux méthodes de synthèse sont optimisées et permettent de contrôler finement la stœchiométrie du matériau, et d’accéder à des cristaux de différentes tailles et morphologies. Une étude complète de la composition des nanocristaux est réalisée par XPS, EDX et thermogravimétrie. L’étude du matériau par diffraction des rayons X met en évidence l’influence de la composition chimique des nanocristaux, et des conditions de température et de pression sur la phase cristalline du matériau. Une transition de phase de la wurtzite vers la chalcopyrite est décrite.Dans la seconde partie sont étudiées les propriétés thermoélectriques des nanocristaux synthétisés. Leur mise en forme en pieds thermoélectriques monolithiques est décrite, ainsi que l’optimisation de leurs propriétés thermoélectriques à travers trois stratégies. Le matériau obtenu est un conducteur de type n, qui permet la conduction des électrons. Sa conductivité thermique est réduite par nanostructuration. La première stratégie consiste à faire varier la composition des nanocristaux, et plus particulièrement le rapport entre charges cationiques et anioniques, pour modifier le taux de dopage du matériau, et ainsi modifier sa conductivité électrique et son coefficient Seebeck. La seconde voie d’amélioration consiste à remplacer les ligands isolants présents après la synthèse des nanocristaux par des ligands courts et conducteurs, pour augmenter la conductivité électrique du matériau. Enfin, des nanoparticules métalliques d’argent, d’étain et de cuivre sont introduites en mélange avec les nanocristaux afin d’augmenter la conductivité électrique du matériau nanocomposite ainsi créé.Cette thèse apporte des éléments de compréhension entre la structure et la composition de matériaux ternaires et leurs propriétés thermoélectriques, et permet d’envisager une amélioration de leurs performances. Les matériaux optimisés présentent des efficacités comparables aux résultats de la littérature pour cette famille de matériaux, notamment autour de la température ambiante. A travers une combinaison efficace des facteurs d’influence étudiés, ces efficacités pourront être dépassées lors de futurs travaux, et le matériau intégré à un dispositif de conversion thermoélectrique couplé à une cellule photovoltaïque, pour la conversion de l’énergie solaire par les deux phénomènes. / This thesis presents the studies made on semiconducting nanocrystals, to be integrated in thermoelectric generators. Thermoelectricity generates a current through a temperature difference between two faces, connected by thermoelectric legs which conduct the charges. Nowadays, the most efficient materials at room temperature contains tellurium, which is toxic and expansive due to its scarcity. A study on theory and literature is carried to understand the underlying phenomena which help us explain the thermoelectric conversion. The potentially interesting materials are selected for their cost and efficiency, tunable by varying different parameters. Chalcopyrite, of formula CuFeS2, presents promising properties for thermoelectricity, and offers an interesting way to replace classic materials as a non-toxic earth-abundant substitute. The chemical synthesis allows to control the composition of the material and to obtain 30 to 50 nm sized nanocrystals, able to scatter phonons and diminish the thermal conductivity of the material as a consequence. The thesis is describing the study of these semiconducting CuFeS2 nanocrystals, and is divided in two main parts.The first part describes the chemical synthesis of the nanocrystals and the characterization of their structure. Two ways of synthesis are developed and optimized, allowing to control the stoichiometry of the material, and to obtain crystals of different sizes and shapes. A complete study of the composition of the nanocrystals is made by XPS, EDX and thermogravimetric analysis. The study of the material by X-ray diffraction shows that the chemical composition of the nanocrystals, as well as the temperature and the pressure, have an influence on their crystalline phase. A phase transition from the wurtzite phase to the chalcopyrite phase is described.In the second part, are studied the thermoelectric properties of the nanocrystals. Their preparation as solid materials is described. The improvement made on their efficiency is following three main paths. The obtained material is a n type conductor, which means it carries electrons. Its thermal conductivity is reduced due to the nanostructuration. The first strategy consists in varying the composition of the nanocrystals, and especially the ratio between positive and negative charges, carried by ions, to modify the electrical conductivity and Seebeck coefficient of the material through doping. The second way of improvement is by replacing the native insulating ligands of the nanocrystals by short inorganic conducting ones, to increase the electrical properties of the material. Finally, metallic nanoparticles, of silver, tin and copper, are blended with the nanocrystals to improve the electrical conductivity of the resulting nanocomposite material.This thesis helps one to understand the relation between structure, composition and thermoelectrical properties of ternary semiconducting materials. It is possible to think of ways of improvement for the studied materials. Our best results are state of the art for this family of materials, especially around room temperature. There is room for improvement, with a proper combination of the studied parameters. During a future work, the optimized material could be integrated to a thermoelectric - photovoltaic device, for conversion of the solar energy through the two phenomena.

Page generated in 0.0707 seconds