• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical experiments with FEMLAB® to support mathematical research

Hansson, Mattias January 2005 (has links)
<p>Using the finite element software FEMLAB® solutions are computed to Dirichlet problems for the Infinity-Laplace equation ∆∞(<i>u</i>) ≡ <i>u</i><sup>2</sup><sub>x</sub><i>u</i><sub>xx </sub>+ 2<i>u</i><sub>x</sub><i>u</i><sub>y</sub><i>u</i><sub>xy </sub>+<sub> </sub><i>u</i><sup>2</sup><sub>y</sub><i>u</i><sub>yy </sub>= 0. For numerical reasons ∆<i>q</i>(<i>u</i>) = div (|▼<i>u</i>|<i>q</i>▼<i>u</i>)<i> = </i>0, which (formally) approaches as ∆∞(<i>u</i>) = 0 as <i>q</i> → ∞, is used in computation. A parametric nonlinear solver is used, which employs a variant of the damped Newton-Gauss method. The analysis of the experiments is done using the known theory of solutions to Dirichlet problems for ∆∞(<i>u</i>) = 0, which includes AMLEs (Absolutely Minimizing Lipschitz Extensions), sets of uniqueness, critical segments and lines of singularity. From the experiments one main conjecture is formulated: For Dirichlet problems, which have a non-constant boundary function, it is possible to predict the structure of the lines of singularity in solutions in the Infinity-Laplace case by examining the corresponding Laplace case.</p>
2

Numerical experiments with FEMLAB® to support mathematical research

Hansson, Mattias January 2005 (has links)
Using the finite element software FEMLAB® solutions are computed to Dirichlet problems for the Infinity-Laplace equation ∆∞(u) ≡ u2xuxx + 2uxuyuxy + u2yuyy = 0. For numerical reasons ∆q(u) = div (|▼u|q▼u) = 0, which (formally) approaches as ∆∞(u) = 0 as q → ∞, is used in computation. A parametric nonlinear solver is used, which employs a variant of the damped Newton-Gauss method. The analysis of the experiments is done using the known theory of solutions to Dirichlet problems for ∆∞(u) = 0, which includes AMLEs (Absolutely Minimizing Lipschitz Extensions), sets of uniqueness, critical segments and lines of singularity. From the experiments one main conjecture is formulated: For Dirichlet problems, which have a non-constant boundary function, it is possible to predict the structure of the lines of singularity in solutions in the Infinity-Laplace case by examining the corresponding Laplace case.

Page generated in 0.0237 seconds