• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 189
  • 65
  • 34
  • 34
  • 14
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1008
  • 139
  • 135
  • 112
  • 75
  • 74
  • 72
  • 70
  • 63
  • 59
  • 52
  • 46
  • 45
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Isotopic analysis of nitrogen in ammonia by Fourier transform infrared spectroscopy

Abuzwida, Mohamed Ali January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
122

Nitrogen-phosphorus compounds produced from the vapor-phase reaction of ammonia and phosphorus pentoxide

MacDonald, Allan H. January 1961 (has links)
Call number: LD2668 .T4 1961 M32
123

Evaluations of ammonia application techniques

Fairweather, Thomas David. January 1979 (has links)
Call number: LD2668 .T4 1979 F35 / Master of Science
124

Desorption of ammonia-water mixtures in microscale geometries for miniaturized absorption systems

Delahanty, Jared Carpenter 07 January 2016 (has links)
A study of ammonia-water desorption in compact counter-flow geometries was conducted. Two novel vapor generation units, comprising integrated desorber, analyzer, and rectifier segments that use microchannel geometries, were conceptualized. The branched-tray concept features a desorber segment that uses predominantly pool-boiling mechanisms for desorption, while the vertical column desorber relies on falling-film evaporation and boiling mechanisms. Both concepts rely on falling-film heat and mass transfer mechanisms in the analyzer and rectifier sections. Segmented heat and mass transfer models, based on available correlations and modeling methodologies, were developed and used for the design of branched tray and vertical column test sections. An experimental facility was designed and constructed to evaluate desorption and rectification heat and mass transfer processes within these components, under realistic operating conditions. Data were analyzed to determine the boiling/evaporation (desorber) and condensation (rectifier) heat transfer coefficients, and to determine values of the desorber liquid and vapor mass transfer coefficients. Additionally, high-speed video and images were used to gain insights into the hydrodynamic phenomena and heat transfer mechanisms in these vapor generation units. Results of the heat and mass transfer analysis were compared with the predictions of correlations and modeling methods in the literature. The vapor generation unit (VGU) test sections were evaluated across a range of concentrated solution mass fractions (0.400 – 0.550), desorber coupling-fluid inlet temperatures (170 – 190ᵒC), and concentrated solution flow rates (0.70 – 1.3 g s-1). Flow rates in this range correspond to desorber liquid Reynolds numbers of approximately 175 to 410 for the branched tray design, and desorber film Reynolds numbers of approximately 90 to 215 for the vertical column. Pressures observed within the VGU test sections ranged from approximately 1620 to 2840 kPa during testing. The novel VGUs were shown to achieve ideal cooling capacities as high as 432 and 323 W for the branched tray and vertical column, respectively. This parameter indicates the cooling capacity that would be achieved by an idealized cooling system using the refrigerant stream produced by the experimental VGU. Ideal COPs of 0.561 and 0.496 were demonstrated for the branched tray and vertical column, respectively. Experimental heat transfer coefficients were found to range from approximately 1860 to 11690 W m-2 K-1 for the pool-boiling desorption of the branched tray VGU. A new correlation was proposed and shown to provide good agreement with the data, achieving average and average absolute deviation of -5.2 and 16.1%, respectively, across the range of conditions tested. Falling-film evaporation/boiling heat transfer coefficients, determined for the desorption process in the vertical column VGU, were found to range from approximately 1290 to 4310 W m-2 K-1. Rectifier condensation heat transfer coefficients ranging from approximately 160 to 250 W m-2 K-1 were observed. Mass transfer coefficients for the desorbers of both concepts were also quantified. These results were used to develop revised heat and mass transfer models of the VGU concepts. The revised models were demonstrated to predict component-level performance with reasonable accuracy, and may be used in the design of future compact VGUs with similar geometries and operating conditions.
125

EVALUATION OF DETOXIFICATION OF AFLATOXIN CONTAMINATED COTTONSEED USING THE AMES SALMONELLA MUTAGEN ASSAY.

Dustin, Yolanda Hernandez. January 1983 (has links)
No description available.
126

The mechanism by which hyperammonaemia may cause hepatic encephalopathy

Smart, Kevin Arthur January 1997 (has links)
No description available.
127

Microbial methane oxidation in the marine and estuarine environment

Starr, Sean Michael January 1999 (has links)
No description available.
128

Ammonia free CdS buffer layerfor Cu(In,Ga)Se2 solar cells by chemical bath deposition

Hedlund, Daniel January 2013 (has links)
The buffer layer in Cu(In,Ga)Se2 solar cells can improve cell performance. In this work we make CdS buffer layer by chemical bath deposition (CBD) without ammonia. CBD without ammonia were sought out since ammonia is a volatile compound. Different recipes for making CdS were tested; only one of the tested recipes actually produced something that is worth further investigating. This recipe used sodium citrate, an innocuous compound instead of ammonia. The best performance was 0.15 % off from the reference.This is almost as good as the used baseline process. However the worst almost completely killed the solar cells. Cell performance dropped by more than absolute 10 %. This demonstrates that chemical bath deposition can have profound effects on the solar cell performance. When trying to improve the best cells only detrimental effects showed up. This might show that, a part in the recipe used, NaOH has detrimental effects on solar cells. Ammonia free chemical bath deposition is possible, however so far it has not produced as good results as the reference. The difference is however very small, which makes it worth further investigating with moreand better solar cell material.
129

The effect of salinity and ammonia on nitirifier function and distribution in estuarine sediments

Gilmour, Fiona Louise January 2009 (has links)
Links between nitrification rates and betaproteobacterial ammonia oxidising bacteria (AOB) community structure in estuarine sediments were determined in relation to changes in salinity and substrate concentrations associated with these environments.  Sediment was collected from the upper, middle and lower reaches of the estuary and incubated with water amended with either a range of salinities from marine to freshwater, or a range of ammonia concentrations.  Ammonia consumption, nitrate and nitrite production were measured at regular intervals as an indicator of nitrification rates and 16S rRNA gene-targeted analysis of betaproteobacterial AOB community structure was carried out by denaturing gradient gel electrophoresis of amplified genes from original sediment, at the beginning of nitrate production, and after a period of incubation.  Salinity and ammonia concentrations were shown to influence both nitrification rates and betaproteobacterial AOB community structure in estuarine sediments, in particular increased ammonia concentrations lead to increased nitrification regardless of the origin of the sediment.  A shift in the dominant betaproteobacterial AOB community structure was observed in microcosms with both salinity and ammonia treatments, but particular treatments did not lead to the selection of a common community structure.  Members of the <i>Nitrosomonas </i>cluster 5 were selected for in most sediments and treatments, regardless of salinity and ammonia treatments, while others, such as members of the <i>Nitrosospira</i>-lineage cluster 1 group, were restricted to low ammonia microcosms.  This study indicates that community members are capable of functioning at a wide range of estuarine salinity and ammonia conditions but that these are eventually replaced by community members better suited to these conditions.
130

Electrochemical detection of gases

Giovanelli, Debora January 2004 (has links)
This thesis discusses diverse electrochemical strategies for the determination of the concentration of the gases hydrogen sulfide, ammonia and halothane. The chemical tagging of sulfide by a variety of structurally diverse substituted benzoquinone species was studied over a wide range of pH (2<pH<10). Each derivative was found to respond to increasing concentration of sulfide (typically over a range 10-200 μM). The electrochemically initiated reaction of N,N-diethyl-pphenylenediamine (DEPD) with sulfide in N,N-dimethylformamide (DMF) was next examined with quantitative detection of sulfide (linear range= 28-3290 μM, LoD= 22 μM) achieved by analysis of the increase in the second oxidation wave. This is consistent with the sulfide attacking the doubly oxidised species in a 1,4-Michael addition. The direct oxidation of sulfide at a nickel hydroxide film on a nickel electrode in alkaline solution has provided the basis for the design of a simple and inexpensive sensor for monitoring H<sub>2</sub>S in the range 20-200 μM. More sensitive (LoD= 1 (μM) amperometric detection of sulfide was obtained at modified nickel electrodes in acidic media in which sulfide was stripped from the nickel oxide layer. This approach was exploited further by using nickel modified screen printed carbon (Ni-SPC) electrodes as economical and disposable sensors for sulfide. Next, two different strategies for determining gaseous ammonia in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluromethylsulfonyl)imide, [EMIM][N(Tf)<sub>2</sub>], and in DMF are described. The first approach exploits the effect of ammonia as a proton acceptor species on the anodic oxidation of hydroquinone, resulting in a linear detection range from 10 to 95 ppm ammonia (LoD= 4.2 ppm). The second approach is based on the direct oxidation of ammonia in either DMF or [EMIM][N(Tf)<sub>2</sub>]. The possibility of photochemically induced electrocatalytic processes within microdroplets containing p-chloranil (2,3,5,6-tetrachloro-1,4-benzoquinone, TCBQ) was examined as a means of detecting the anaesthetic gas halothane.</p> Finally, two of the more promising routes for sulfide detection were studied at elevated temperatures (up to 70 °C) with a view to developing H<sub>2</sub>S sensors capable of meeting the demands of oilfield applications.

Page generated in 0.027 seconds