1 |
A simulation workflow to evaluate the performance of dynamic load balancing with over decomposition for iterative parallel applicationsTesser, Rafael Keller January 2018 (has links)
Nesta tese é apresentado um novo workflow de simulação para avaliar o desempenho do balanceamento de carga dinâmico baseado em sobre-decomposição aplicado a aplicações paralelas iterativas. Seus objetivos são realizar essa avaliação com modificações mínimas da aplicação e a baixo custo em termos de tempo e de sua necessidade de recursos computacionais. Muitas aplicações paralelas sofrem com desbalanceamento de carga dinâmico (temporal) que não pode ser tratado a nível de aplicação. Este pode ser causado por características intrínsecas da aplicação ou por fatores externos de hardware ou software. Como demonstrado nesta tese, tal desbalanceamento é encontrado mesmo em aplicações cujo código não aparenta qualquer dinamismo. Portanto, faz-se necessário utilizar mecanismo de balanceamento de carga dinâmico a nível de runtime. Este trabalho foca no balanceamento de carga dinâmico baseado em sobre-decomposição. No entanto, avaliar e ajustar o desempenho de tal técnica pode ser custoso. Isso geralmente requer modificações na aplicação e uma grande quantidade de execuções para obter resultados estatisticamente significativos com diferentes combinações de parâmetros de balanceamento de carga Além disso, para que essas medidas sejam úteis, são usualmente necessárias grandes alocações de recursos em um sistema de produção. Simulated Adaptive MPI (SAMPI), nosso workflow de simulação, emprega uma combinação de emulação sequencial e replay de rastros para reduzir os custos dessa avaliação. Tanto emulação sequencial como replay de rastros requerem um único nó computacional. Além disso, o replay demora apenas uma pequena fração do tempo de uma execução paralela real da aplicação. Adicionalmente à simulação de balanceamento de carga, foram desenvolvidas técnicas de agregação espacial e rescaling a nível de aplicação, as quais aceleram o processo de emulação. Para demonstrar os potenciais benefícios do balanceamento de carga dinâmico com sobre-decomposição, foram avaliados os ganhos de desempenho empregando essa técnica a uma aplicação iterativa paralela da área de geofísica (Ondes3D). Adaptive MPI (AMPI) foi utilizado para prover o suporte a balanceamento de carga dinâmico, resultando em ganhos de desempenho de até 36.58% em 288 cores de um cluster Essa avaliação também é usada pra ilustrar as dificuldades encontradas nesse processo, assim justificando o uso de simulação para facilitá-la. Para implementar o workflow SAMPI, foi utilizada a interface SMPI do simulador SimGrid, tanto no modo de emulação, como no de replay de rastros. Para validar esse simulador, foram comparadas execuções simuladas (SAMPI) e reais (AMPI) da aplicação Ondes3D. As simulações apresentaram uma evolução do balanceamento de carga bastante similar às execuções reais. Adicionalmente, SAMPI estimou com sucesso a melhor heurística de balanceamento de carga para os cenários testados. Além dessa validação, nesta tese é demonstrado o uso de SAMPI para exploração de parâmetros de balanceamento de carga e para planejamento de capacidade computacional. Quanto ao desempenho da simulação, estimamos que o workflow completo é capaz de simular a execução do Ondes3D com 24 combinações de parâmetros de balanceamento de carga em 5 horas para o nosso cenário de terremoto mais pesado e 3 horas para o mais leve. / In this thesis we present a novel simulation workflow to evaluate the performance of dynamic load balancing with over-decomposition applied to iterative parallel applications at low-cost. Its goals are to perform such evaluation with minimal application modification and at a low cost in terms of time and of resource requirements. Many parallel applications suffer from dynamic (temporal) load imbalance that can not be treated at the application level. It may be caused by intrinsic characteristics of the application or by external software and hardware factors. As demonstrated in this thesis, such dynamic imbalance can be found even in applications whose codes do not hint at any dynamism. Therefore, we need to rely on runtime dynamic load balancing mechanisms, such as dynamic load balancing based on over-decomposition. The problem is that evaluating and tuning the performance of such technique can be costly. This usually entails modifications to the application and a large number of executions to get statistically sound performance measurements with different load balancing parameter combinations. Moreover, useful and accurate measurements often require big resource allocations on a production cluster. Our simulation workflow, dubbed Simulated Adaptive MPI (SAMPI), employs a combined sequential emulation and trace-replay simulation approach to reduce the cost of such an evaluation Both sequential emulation and trace-replay require a single computer node. Additionally, the trace-replay simulation lasts a small fraction of the real-life parallel execution time of the application. Besides the basic SAMPI simulation, we developed spatial aggregation and applicationlevel rescaling techniques to speed-up the emulation process. To demonstrate the real-life performance benefits of dynamic load balance with over-decomposition, we evaluated the performance gains obtained by employing this technique on a iterative parallel geophysics application, called Ondes3D. Dynamic load balancing support was provided by Adaptive MPI (AMPI). This resulted in up to 36.58% performance improvement, on 288 cores of a cluster. This real-life evaluation also illustrates the difficulties found in this process, thus justifying the use of simulation. To implement the SAMPI workflow, we relied on SimGrid’s Simulated MPI (SMPI) interface in both emulation and trace-replay modes.To validate our simulator, we compared simulated (SAMPI) and real-life (AMPI) executions of Ondes3D. The simulations presented a load balance evolution very similar to real-life and were also successful in choosing the best load balancing heuristic for each scenario. Besides the validation, we demonstrate the use of SAMPI for load balancing parameter exploration and for computational capacity planning. As for the performance of the simulation itself, we roughly estimate that our full workflow can simulate the execution of Ondes3D with 24 different load balancing parameter combinations in 5 hours for our heavier earthquake scenario and in 3 hours for the lighter one.
|
2 |
A simulation workflow to evaluate the performance of dynamic load balancing with over decomposition for iterative parallel applicationsTesser, Rafael Keller January 2018 (has links)
Nesta tese é apresentado um novo workflow de simulação para avaliar o desempenho do balanceamento de carga dinâmico baseado em sobre-decomposição aplicado a aplicações paralelas iterativas. Seus objetivos são realizar essa avaliação com modificações mínimas da aplicação e a baixo custo em termos de tempo e de sua necessidade de recursos computacionais. Muitas aplicações paralelas sofrem com desbalanceamento de carga dinâmico (temporal) que não pode ser tratado a nível de aplicação. Este pode ser causado por características intrínsecas da aplicação ou por fatores externos de hardware ou software. Como demonstrado nesta tese, tal desbalanceamento é encontrado mesmo em aplicações cujo código não aparenta qualquer dinamismo. Portanto, faz-se necessário utilizar mecanismo de balanceamento de carga dinâmico a nível de runtime. Este trabalho foca no balanceamento de carga dinâmico baseado em sobre-decomposição. No entanto, avaliar e ajustar o desempenho de tal técnica pode ser custoso. Isso geralmente requer modificações na aplicação e uma grande quantidade de execuções para obter resultados estatisticamente significativos com diferentes combinações de parâmetros de balanceamento de carga Além disso, para que essas medidas sejam úteis, são usualmente necessárias grandes alocações de recursos em um sistema de produção. Simulated Adaptive MPI (SAMPI), nosso workflow de simulação, emprega uma combinação de emulação sequencial e replay de rastros para reduzir os custos dessa avaliação. Tanto emulação sequencial como replay de rastros requerem um único nó computacional. Além disso, o replay demora apenas uma pequena fração do tempo de uma execução paralela real da aplicação. Adicionalmente à simulação de balanceamento de carga, foram desenvolvidas técnicas de agregação espacial e rescaling a nível de aplicação, as quais aceleram o processo de emulação. Para demonstrar os potenciais benefícios do balanceamento de carga dinâmico com sobre-decomposição, foram avaliados os ganhos de desempenho empregando essa técnica a uma aplicação iterativa paralela da área de geofísica (Ondes3D). Adaptive MPI (AMPI) foi utilizado para prover o suporte a balanceamento de carga dinâmico, resultando em ganhos de desempenho de até 36.58% em 288 cores de um cluster Essa avaliação também é usada pra ilustrar as dificuldades encontradas nesse processo, assim justificando o uso de simulação para facilitá-la. Para implementar o workflow SAMPI, foi utilizada a interface SMPI do simulador SimGrid, tanto no modo de emulação, como no de replay de rastros. Para validar esse simulador, foram comparadas execuções simuladas (SAMPI) e reais (AMPI) da aplicação Ondes3D. As simulações apresentaram uma evolução do balanceamento de carga bastante similar às execuções reais. Adicionalmente, SAMPI estimou com sucesso a melhor heurística de balanceamento de carga para os cenários testados. Além dessa validação, nesta tese é demonstrado o uso de SAMPI para exploração de parâmetros de balanceamento de carga e para planejamento de capacidade computacional. Quanto ao desempenho da simulação, estimamos que o workflow completo é capaz de simular a execução do Ondes3D com 24 combinações de parâmetros de balanceamento de carga em 5 horas para o nosso cenário de terremoto mais pesado e 3 horas para o mais leve. / In this thesis we present a novel simulation workflow to evaluate the performance of dynamic load balancing with over-decomposition applied to iterative parallel applications at low-cost. Its goals are to perform such evaluation with minimal application modification and at a low cost in terms of time and of resource requirements. Many parallel applications suffer from dynamic (temporal) load imbalance that can not be treated at the application level. It may be caused by intrinsic characteristics of the application or by external software and hardware factors. As demonstrated in this thesis, such dynamic imbalance can be found even in applications whose codes do not hint at any dynamism. Therefore, we need to rely on runtime dynamic load balancing mechanisms, such as dynamic load balancing based on over-decomposition. The problem is that evaluating and tuning the performance of such technique can be costly. This usually entails modifications to the application and a large number of executions to get statistically sound performance measurements with different load balancing parameter combinations. Moreover, useful and accurate measurements often require big resource allocations on a production cluster. Our simulation workflow, dubbed Simulated Adaptive MPI (SAMPI), employs a combined sequential emulation and trace-replay simulation approach to reduce the cost of such an evaluation Both sequential emulation and trace-replay require a single computer node. Additionally, the trace-replay simulation lasts a small fraction of the real-life parallel execution time of the application. Besides the basic SAMPI simulation, we developed spatial aggregation and applicationlevel rescaling techniques to speed-up the emulation process. To demonstrate the real-life performance benefits of dynamic load balance with over-decomposition, we evaluated the performance gains obtained by employing this technique on a iterative parallel geophysics application, called Ondes3D. Dynamic load balancing support was provided by Adaptive MPI (AMPI). This resulted in up to 36.58% performance improvement, on 288 cores of a cluster. This real-life evaluation also illustrates the difficulties found in this process, thus justifying the use of simulation. To implement the SAMPI workflow, we relied on SimGrid’s Simulated MPI (SMPI) interface in both emulation and trace-replay modes.To validate our simulator, we compared simulated (SAMPI) and real-life (AMPI) executions of Ondes3D. The simulations presented a load balance evolution very similar to real-life and were also successful in choosing the best load balancing heuristic for each scenario. Besides the validation, we demonstrate the use of SAMPI for load balancing parameter exploration and for computational capacity planning. As for the performance of the simulation itself, we roughly estimate that our full workflow can simulate the execution of Ondes3D with 24 different load balancing parameter combinations in 5 hours for our heavier earthquake scenario and in 3 hours for the lighter one.
|
3 |
A simulation workflow to evaluate the performance of dynamic load balancing with over decomposition for iterative parallel applicationsTesser, Rafael Keller January 2018 (has links)
Nesta tese é apresentado um novo workflow de simulação para avaliar o desempenho do balanceamento de carga dinâmico baseado em sobre-decomposição aplicado a aplicações paralelas iterativas. Seus objetivos são realizar essa avaliação com modificações mínimas da aplicação e a baixo custo em termos de tempo e de sua necessidade de recursos computacionais. Muitas aplicações paralelas sofrem com desbalanceamento de carga dinâmico (temporal) que não pode ser tratado a nível de aplicação. Este pode ser causado por características intrínsecas da aplicação ou por fatores externos de hardware ou software. Como demonstrado nesta tese, tal desbalanceamento é encontrado mesmo em aplicações cujo código não aparenta qualquer dinamismo. Portanto, faz-se necessário utilizar mecanismo de balanceamento de carga dinâmico a nível de runtime. Este trabalho foca no balanceamento de carga dinâmico baseado em sobre-decomposição. No entanto, avaliar e ajustar o desempenho de tal técnica pode ser custoso. Isso geralmente requer modificações na aplicação e uma grande quantidade de execuções para obter resultados estatisticamente significativos com diferentes combinações de parâmetros de balanceamento de carga Além disso, para que essas medidas sejam úteis, são usualmente necessárias grandes alocações de recursos em um sistema de produção. Simulated Adaptive MPI (SAMPI), nosso workflow de simulação, emprega uma combinação de emulação sequencial e replay de rastros para reduzir os custos dessa avaliação. Tanto emulação sequencial como replay de rastros requerem um único nó computacional. Além disso, o replay demora apenas uma pequena fração do tempo de uma execução paralela real da aplicação. Adicionalmente à simulação de balanceamento de carga, foram desenvolvidas técnicas de agregação espacial e rescaling a nível de aplicação, as quais aceleram o processo de emulação. Para demonstrar os potenciais benefícios do balanceamento de carga dinâmico com sobre-decomposição, foram avaliados os ganhos de desempenho empregando essa técnica a uma aplicação iterativa paralela da área de geofísica (Ondes3D). Adaptive MPI (AMPI) foi utilizado para prover o suporte a balanceamento de carga dinâmico, resultando em ganhos de desempenho de até 36.58% em 288 cores de um cluster Essa avaliação também é usada pra ilustrar as dificuldades encontradas nesse processo, assim justificando o uso de simulação para facilitá-la. Para implementar o workflow SAMPI, foi utilizada a interface SMPI do simulador SimGrid, tanto no modo de emulação, como no de replay de rastros. Para validar esse simulador, foram comparadas execuções simuladas (SAMPI) e reais (AMPI) da aplicação Ondes3D. As simulações apresentaram uma evolução do balanceamento de carga bastante similar às execuções reais. Adicionalmente, SAMPI estimou com sucesso a melhor heurística de balanceamento de carga para os cenários testados. Além dessa validação, nesta tese é demonstrado o uso de SAMPI para exploração de parâmetros de balanceamento de carga e para planejamento de capacidade computacional. Quanto ao desempenho da simulação, estimamos que o workflow completo é capaz de simular a execução do Ondes3D com 24 combinações de parâmetros de balanceamento de carga em 5 horas para o nosso cenário de terremoto mais pesado e 3 horas para o mais leve. / In this thesis we present a novel simulation workflow to evaluate the performance of dynamic load balancing with over-decomposition applied to iterative parallel applications at low-cost. Its goals are to perform such evaluation with minimal application modification and at a low cost in terms of time and of resource requirements. Many parallel applications suffer from dynamic (temporal) load imbalance that can not be treated at the application level. It may be caused by intrinsic characteristics of the application or by external software and hardware factors. As demonstrated in this thesis, such dynamic imbalance can be found even in applications whose codes do not hint at any dynamism. Therefore, we need to rely on runtime dynamic load balancing mechanisms, such as dynamic load balancing based on over-decomposition. The problem is that evaluating and tuning the performance of such technique can be costly. This usually entails modifications to the application and a large number of executions to get statistically sound performance measurements with different load balancing parameter combinations. Moreover, useful and accurate measurements often require big resource allocations on a production cluster. Our simulation workflow, dubbed Simulated Adaptive MPI (SAMPI), employs a combined sequential emulation and trace-replay simulation approach to reduce the cost of such an evaluation Both sequential emulation and trace-replay require a single computer node. Additionally, the trace-replay simulation lasts a small fraction of the real-life parallel execution time of the application. Besides the basic SAMPI simulation, we developed spatial aggregation and applicationlevel rescaling techniques to speed-up the emulation process. To demonstrate the real-life performance benefits of dynamic load balance with over-decomposition, we evaluated the performance gains obtained by employing this technique on a iterative parallel geophysics application, called Ondes3D. Dynamic load balancing support was provided by Adaptive MPI (AMPI). This resulted in up to 36.58% performance improvement, on 288 cores of a cluster. This real-life evaluation also illustrates the difficulties found in this process, thus justifying the use of simulation. To implement the SAMPI workflow, we relied on SimGrid’s Simulated MPI (SMPI) interface in both emulation and trace-replay modes.To validate our simulator, we compared simulated (SAMPI) and real-life (AMPI) executions of Ondes3D. The simulations presented a load balance evolution very similar to real-life and were also successful in choosing the best load balancing heuristic for each scenario. Besides the validation, we demonstrate the use of SAMPI for load balancing parameter exploration and for computational capacity planning. As for the performance of the simulation itself, we roughly estimate that our full workflow can simulate the execution of Ondes3D with 24 different load balancing parameter combinations in 5 hours for our heavier earthquake scenario and in 3 hours for the lighter one.
|
4 |
MigBSP++: balanceamento de carga eficiente para aplicações paralelas em fasesGomes, Roberto de Quadros 20 March 2014 (has links)
Submitted by Nara Lays Domingues Viana Oliveira (naradv) on 2015-07-15T14:37:25Z
No. of bitstreams: 1
ROBERTO.pdf: 6262020 bytes, checksum: 76c7611d1d91674b302b17af7b02b0e4 (MD5) / Made available in DSpace on 2015-07-15T14:37:25Z (GMT). No. of bitstreams: 1
ROBERTO.pdf: 6262020 bytes, checksum: 76c7611d1d91674b302b17af7b02b0e4 (MD5)
Previous issue date: 2014 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A migração de processos é uma técnica utilizada no remapeamento de um processo para um processador mais rápido ou para aproximá-lo de outros processos com os quais se comunica frequentemente. Esta dissertação descreve o MigBSP++, um modelo de reescalonamento de processos que utiliza a técnica de migração para realizar o balanceamento de carga em sistemas paralelos. Direcionado às aplicações do tipo Bulk-Synchronous Parallel (BSP), o modelo apresentado redistribui os processos com o intuito de reduzir o tempo de cada super-passo. De modo similar ao MigBSP, o MigBSP++ combina múltiplas métricas a fim de decidir as migrações necessárias para que o sistema entre em equilíbrio sem a intervenção do usuário. As métricas utilizadas são: computação, comunicação e sobrecusto de migração. Através de sua função de decisão, chamada Potencial de Migração (PM), essas métricas são utilizadas para eleger os processos mais propícios a trazer o equilíbrio ao sistema. O MigBSP++ responde as questões necessárias para a política de migração de processos: quando realizar a migração de processos; quais processos são candidatos à migração e; para onde migrar os processos selecionados. Como contribuição científica, o MigBSP++ introduz as soluções para duas questões que estão em aberto no MigBSP: (a) a detecção de desbalanceamento de carga quando há mais processos do que processadores e; (b) a definição de quantos processos irão migrar de fato. Para a questão (a), propõe-se alteração do modo de detecção de desbalanceamento utilizada, observando o tempo total de computação de cada processador. Para a questão (b) é apresentado um algoritmo chamado de Algoritmo de Predição BSP (APBSP). Os dados de entrada do APBSP são os processos eleitos pela técnica de PM e a saída é uma lista de processos que irão, de fato, migrar proporcionando a redução do tempo do próximo super-passo. Para demonstrar os resultados da aplicação deste modelo, foram desenvolvidas duas aplicações BSP com o auxílio da biblioteca Adaptive Message Passing Interface (AMPI). Essa ferramenta oferece um arcabouço uniforme que, através da migração de processos, permite o balanceamento de carga de forma transparente ao usuário. Foram desenvolvidas as estratégias de balanceamento de carga, baseadas no MigBSP e no MigBSP++, para a realização da comparação entre elas e com as estratégias já existentes no sistema. Os resultados apontam que, nos casos onde a granularidade da tarefa é maior, os ganhos em tempo de execução são mais evidentes, podendo ser de até 46% em relação à aplicação sem balanceamento e de até 37% em relação às estratégias nativas do AMPI. Esses números sugerem que o modelo MigBSP++ tem aplicação prática e pode produzir resultados satisfatórios. / Process migration is a technique used in the remapping of a process to a faster processor or in the approaching from the processes which already have some communication among themselves. This essay describes the MigBSP++, a rescheduling process model that uses the technique of migration to perform load balancing in parallel systems. Directed to the BulkSynchronous Parallel (BSP) applications, the model redistributes the processes with the purpose of reducing the time of each super-step. Similar to MigBSP way, MigBSP++ combines multiple metrics to decide which migrations should be chosen in order to balance the entire system without the user intervention. The metrics used by the model are: computing, communication and extra costs of migration. Through its decision function, called Potential Migration (PM), these metrics are used to choose the most appropriate processes that will balance the system. MigBSP++ answers the questions about the policy process migration issues: when to perform the migration process, which processes are candidates for migration and where to migrate the selected processes. As scientific contribution, MigBSP++ introduces the solutions to two issues that were missing at MigBSP: (a) the detection of imbalance load when there are more processes than processors, and (b) the definition of how many processes will migrate indeed. On the question (a), a change of the mode of detection of imbalance is proposed, noting the total computation time for each processor. On the second question (b) an algorithm called the Prediction Algorithm BSP (PABSP) is presented. The input data of PABSP are elected process by the PM technique and the output is a list of processes that will, indeed, migrate providing a time reduction of the next super-step. To demonstrate the results of applying this model, two BSP applications have been developed with the assistance of Adaptive Message Passing Interface (AMPI) library. This tool provides a uniform framework that, through the migration process, allows a transparent load balancing to the user. Based on MigBSP and MigBSP++, load balancing strategies have been developed for the performance and comparison among new strategies and among the ones which were already in the system.The results indicate that, in cases where the granularity of the task, the gains in runtime are more evident, reaching up to 46% compared to the application without balancing, and 37% when compared to native strategies AMPI. These numbers suggest that the model MigBSP++ has practical application and can produce satisfactory results.
|
Page generated in 0.0217 seconds