• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter

Guo, Yuyan 15 May 2009 (has links)
This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal/β″- alumina were investigated, using Ni, Cu, Co and W as the metal components. Pure metal electrodes (PME) were also studied, including Ta, Ni, Nb, Ir, W and MoRe electrodes. The stability of MIEE/β′′-alumina solid electrolyte (BASE) interface was studied in terms of the chemical potential of Na-Al-Ti-O system at 1100K (typical AMTEC operating temperature). Ni metal was compatible with sodium titanate and BASE and displayed the best initial performance among all tested PMEs. Ni/sodium titanate electrodes with 4/1 mass ratios of metal/ceramic performed best among all tested electrodes. Scanning Electron Microscope (SEM) observations showed that grain agglomeration, which is the main mechanism for electrode degradation, occurred in all tested electrodes. Ceramic components were able to effectively limit the growth of metal grains and resulted in a long lifetime for MIEEs. Ni particles in the MIEE formed a network microstructure that was close to the theoretical morphology of the ideal electrode. A model based on percolation theory was constructed to interpret and predict the performance of MIEEs. The electrode kinetics was studied and a theoretical expression for the interface impedance was derived for both PME and MIEE, using electrochemical impedance spectroscopy (EIS). The conductivity of the Na2Ti3O7 and Na2Ti6O13 mixture was measured. The average activation energy for the bulk conductivity was 0.87ev. Finally, theoretical analysis clarified that the transfer coefficient α value change would cause at most a few percent change in the electrode performance parameter B.
2

Design, improvement, and testing of a thermal-electrical analysis application of a multiple beta-tube AMTEC converter

Pavlenko, Ilia V. 30 September 2004 (has links)
A new design AMTEC converter model was developed, and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, several new design models were successively developed, and finally an optimal new design model was developed. The model was created within Sinda/Fluint, with its graphical interface, Thermal Desktop, a software package that can be used to conduct complex thermal and fluid analyses. Performance predictions were then correlated and compared with actual performance data from the Road Runner II AMTEC converter. Predicted performance results were within 10% of actual performance data for all operating conditions analyzed. This accuracy tended to increase within operating ranges that would be more likely encountered in AMTEC applications. Performance predictions and parametric design studies were then performed on a proposed new design converter model with a variety of annular condenser heights and with potassium as a working fluid to evaluate the effects of various design modifications. Results clearly indicated the effects of the converter design modifications on the converter's power and efficiency, thus simplifying the design optimization process. With the close correlation to actual data and the design information obtained from parametric studies, it was determined that the model could serve as an effective tool for the design of AMTEC converters.
3

Design, improvement, and testing of a thermal-electrical analysis application of a multiple beta-tube AMTEC converter

Pavlenko, Ilia V. 30 September 2004 (has links)
A new design AMTEC converter model was developed, and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, several new design models were successively developed, and finally an optimal new design model was developed. The model was created within Sinda/Fluint, with its graphical interface, Thermal Desktop, a software package that can be used to conduct complex thermal and fluid analyses. Performance predictions were then correlated and compared with actual performance data from the Road Runner II AMTEC converter. Predicted performance results were within 10% of actual performance data for all operating conditions analyzed. This accuracy tended to increase within operating ranges that would be more likely encountered in AMTEC applications. Performance predictions and parametric design studies were then performed on a proposed new design converter model with a variety of annular condenser heights and with potassium as a working fluid to evaluate the effects of various design modifications. Results clearly indicated the effects of the converter design modifications on the converter's power and efficiency, thus simplifying the design optimization process. With the close correlation to actual data and the design information obtained from parametric studies, it was determined that the model could serve as an effective tool for the design of AMTEC converters.

Page generated in 0.022 seconds