• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coding of Bat-like Auditory Features in the AN2 Interneuron of the Pacific Field Cricket, Teleogryllus oceanicus and its Relation to Decreasing the Conspicuousness of Synthetic Bat Echolocation Calls

Asi, Navdeep Singh 14 December 2010 (has links)
Many insects have auditory systems capable of detecting the ultrasonic calls of insectivorous bats and use these cues to evade capture. I tested the hypothesis that bats can decrease the conspicuousness of their echolocation calls by varying three call features: duration, repetition rate and ramp times. This was done by examining the AN2 command interneuron’s response to these features in the cricket, Teleogryllus oceanicus, after describing the firing pattern necessary for evasive behaviour. Past studies on duration and repetition rate suggest increased thresholds for short durations and low repetition rates. Measurements of the AN2 response, which controls evasive behaviour, indicated that increased thresholds were a result of a decrease in bursting, raw spike numbers and an increase in latencies in the AN2. Results suggest that there is pressure on bats to evade early detection and that this can be done by employing large ramp times in search phase echolocation calls.
2

Coding of Bat-like Auditory Features in the AN2 Interneuron of the Pacific Field Cricket, Teleogryllus oceanicus and its Relation to Decreasing the Conspicuousness of Synthetic Bat Echolocation Calls

Asi, Navdeep Singh 14 December 2010 (has links)
Many insects have auditory systems capable of detecting the ultrasonic calls of insectivorous bats and use these cues to evade capture. I tested the hypothesis that bats can decrease the conspicuousness of their echolocation calls by varying three call features: duration, repetition rate and ramp times. This was done by examining the AN2 command interneuron’s response to these features in the cricket, Teleogryllus oceanicus, after describing the firing pattern necessary for evasive behaviour. Past studies on duration and repetition rate suggest increased thresholds for short durations and low repetition rates. Measurements of the AN2 response, which controls evasive behaviour, indicated that increased thresholds were a result of a decrease in bursting, raw spike numbers and an increase in latencies in the AN2. Results suggest that there is pressure on bats to evade early detection and that this can be done by employing large ramp times in search phase echolocation calls.

Page generated in 0.1655 seconds