• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Методы сегментации 3D объектов в облаке точек : магистерская диссертация / Methods of segmentation of 3D objects in a point cloud

Самаркин, Д. С., Samarkin, D. S. January 2024 (has links)
Цель: разработка модели сегментации трёхмерных объектов на основе методологии машинного обучения. Объект: процессы сегментации трёхмерных объектов, представленных облаком точек. Методы: проведение исследование моделей сегментации трёхмерных объектов на основании датасета ScanNet с оценкой точности на основании метрики Average Intersection over Union (avgloU). Результаты: в ходе работы проведено сравнение и выявлены наиболее точные и производительные сочетания внутренней структуры обрабатываемых данных и архитектуры моделей, которые являются самыми перспективными для дальнейших исследований. наилучшие результаты показала библиотек машинного обучения Point Transformer со значением метрики avgIoU, равной 0,794. Полученные результаты будут использованы для дальнейшей работы над методами обработкой данных, поиском и настройкой моделей машинного обучения для задачи сегментации 3D-объектов для достижения лучшей точности и производительности. / Objective: development of a three-dimensional object segmentation model based on machine learning methodology. Object: segmentation processes of three-dimensional objects represented by a point cloud. Methods: conducting a study of three-dimensional object segmentation models based on the ScanNet dataset with accuracy assessment based on the Average Intersection over Union (avgloU) metric. Results: during the work, a comparison was made and the most accurate and productive combinations of the internal structure of the processed data and the architecture of the models were identified, which are the most promising for further research. The best results were shown by the Point Transformer machine learning library with an avgIoU metric value of 0.794. The obtained results will be used for further work on data processing methods, searching and tuning machine learning models for the task of segmenting 3D objects to achieve better accuracy and performance.

Page generated in 0.0324 seconds