141 |
Unsupervised Anomaly Detection in Numerical DatasetsJoshi, Vineet 05 June 2015 (has links)
No description available.
|
142 |
Volume CT Data Inspection and Deep Learning Based Anomaly Detection for Turbine BladeWang, Kan January 2017 (has links)
No description available.
|
143 |
Evidence for the Intermediate Phase in Bulk (K2O)<sub>x</sub>(GeO2)<sub>1-x</sub> glasses and its consequences on Electrical and Thermal PropertiesWang, Ninghua 09 October 2007 (has links)
No description available.
|
144 |
DCLAD: DISTRIBUTED CLUSTER BASED LOCALIZATION ANOMALY DETECTION IN WIRELESS SENSOR NETWORKS USING SINGLE MOBILE BEACONPALADUGU, KARTHIKA January 2007 (has links)
No description available.
|
145 |
Two new approaches in anomaly detection with field data from bridges both in construction and service stagesZhang, Fan 12 October 2015 (has links)
No description available.
|
146 |
Processing and Interpretation of Three-Component Borehole/Surface Seismic Data over Gabor Gas Storage FieldWei, Li 09 September 2015 (has links)
No description available.
|
147 |
Probabilistic Model for Detecting Network Traffic AnomaliesYellapragada, Ramani 30 June 2004 (has links)
No description available.
|
148 |
Time-based Approach to Intrusion Detection using Multiple Self-Organizing MapsSawant, Ankush 21 April 2005 (has links)
No description available.
|
149 |
Spectrum Awareness: Deep Learning and Isolation Forest Approaches for Open-set Identification of SignalsFredieu, Christian January 2022 (has links)
Over the next decade, 5G networks will become more and more prevalent in everyday life. This will provide solutions to current limitations by allowing access to bands previously unavailable to civilian communication networks. However, this also provides new challenges primarily for the military operations. Radar bands have traditionally operated primarily in the sub-6 GHz region. In the past, these bands were off limits to civilian communications. However, that changed when they were opened up in the 2010's. With these bands now being forced to co-exist with commercial users, military operators need systems to identify the signals within a spectrum environment. In this thesis, we extend current research in the area of signal identification by using previous work in the area to construct a deep learning-based classifier that is able to classify a signal as either as a communication waveform (Single-Carrier (SC), Single-Carrier Frequency Division Multiple Access (SC-FDMA), Orthogonal Frequency Division Multiplexing (OFDM), Amplitude Modulation (AM), Frequency Modulation (FM)) or a radar waveform (Linear Frequency Modulation (LFM) or Phase-coded). However, the downside to this method is that the classifier is based on the assumption that all possible signals within the spectrum environment are within the training dataset. To account for this, we have proposed a novel classifier design for detection of unknown signals outside of the training dataset. This two-classifier system forms an open-set recognition (OSR) system that is used to provide more situational awareness for operators. / M.S. / Over the next decade, next-generation communications will become prevalent in everyday life providing solutions to limitation previously experienced by older networks. However, this also brings about new challenges. Bands in the electromagnetic spectrum that were reserved for military use are now being opened up to commercial users. This means that military and civilian networks now have a challenge of co-existence that must be addressed. One way to address this is being aware of what signals are operating in the bands such as either communication signals, radar signals, or both. In this thesis, we will developed a system that can do that task of identifying a signal as one of five communication waveforms or two radar waveforms by using machine learning techniques. We also develop a new technique for identifying unknown signals that might be operating within these bands to further help military and civilian operators monitor the spectrum.
|
150 |
Extensions of Weighted Multidimensional Scaling with Statistics for Data Visualization and Process MonitoringKodali, Lata 04 September 2020 (has links)
This dissertation is the compilation of two major innovations that rely on a common technique known as multidimensional scaling (MDS). MDS is a dimension-reduction method that takes high-dimensional data and creates low-dimensional versions.
Project 1: Visualizations are useful when learning from high-dimensional data. However, visualizations, just as any data summary, can be misleading when they do not incorporate measures of uncertainty; e.g., uncertainty from the data or the dimension reduction algorithm used to create the visual display. We incorporate uncertainty into visualizations created by a weighted version of MDS called WMDS. Uncertainty exists in these visualizations on the variable weights, the coordinates of the display, and the fit of WMDS. We quantify these uncertainties using Bayesian models in a method we call Informative Probabilistic WMDS (IP-WMDS). Visually, we display estimated uncertainty in the form of color and ellipses, and practically, these uncertainties reflect trust in WMDS. Our results show that these displays of uncertainty highlight different aspects of the visualization, which can help inform analysts.
Project 2: Analysis of network data has emerged as an active research area in statistics. Much of the focus of ongoing research has been on static networks that represent a single snapshot or aggregated historical data unchanging over time. However, most networks result from temporally-evolving systems that exhibit intrinsic dynamic behavior. Monitoring such temporally-varying networks to detect anomalous changes has applications in both social and physical sciences. In this work, we simulate data from models that rely on MDS, and we perform an evaluation study of the use of summary statistics for anomaly detection by incorporating principles from statistical process monitoring. In contrast to most previous studies, we deliberately incorporate temporal auto-correlation in our study. Other considerations in our comprehensive assessment include types and duration of anomaly, model type, and sparsity in temporally-evolving networks. We conclude that the use of summary statistics can be valuable tools for network monitoring and often perform better than more involved techniques. / Doctor of Philosophy / In this work, two main ideas in data visualization and anomaly detection in dynamic networks are further explored. For both ideas, a connecting theme is extensions of a method called Multidimensional Scaling (MDS). MDS is a dimension-reduction method that takes high-dimensional data (all $p$ dimensions) and creates a low-dimensional projection of the data. That is, relationships in a dataset with presumably a large number of dimensions or variables can be summarized into a lower number of, e.g., two, dimensions. For a given data, an analyst could use a scatterplot to observe the relationship between 2 variables initially. Then, by coloring points, changing the size of the points, or using different shapes for the points, perhaps another 3 to 4 more variables (in total around 7 variables) may be shown in the scatterplot. An advantage of MDS (or any dimension-reduction technique) is that relationships among the data can be viewed easily in a scatterplot regardless of the number of variables in the data. The interpretation of any MDS plot is that observations that are close together are relatively more similar than observations that are farther apart, i.e., proximity in the scatterplot indicates relative similarity.
In the first project, we use a weighted version of MDS called Weighted Multidimensional Scaling (WMDS) where weights, which indicate a sense of importance, are placed on the variables of the data. The problem with any WMDS plot is that inaccuracies of the method are not included in the plot. For example, is an observation that appears to be an outlier, really an outlier? An analyst cannot confirm this without further context. Thus, we created a model to calculate, visualize, and interpret such inaccuracy or uncertainty in WMDS plots. Such modeling efforts help analysts facilitate exploratory data analysis.
In the second project, the theme of MDS is extended to an application with dynamic networks. Dynamic networks are multiple snapshots of pairwise interactions (represented as edges) among a set of nodes (observations). Over time, changes may appear in some of the snapshots. We aim to detect such changes using a process monitoring approach on dynamic networks. Statistical monitoring approaches determine thresholds for in-control or expected behavior that are calculated from data with no signal. Then, the in-control thresholds are used to monitor newly collected data. We applied this approach on dynamic network data, and we utilized a detailed simulation study to better understand the performance of such monitoring. For the simulation study, data are generated from dynamic network models that use MDS. We found that monitoring summary statistics of the network were quite effective on data generated from these models. Thus, simple tools may be used as a first step to anomaly detection in dynamic networks.
|
Page generated in 0.0464 seconds