• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lead and Copper Corrosion Control in New Construction: Shock Chlorination, Flushing to Remove Debris & In-line Device Product Testing

Raetz, Meredith Ann 27 August 2010 (has links)
Several aesthetic, health, and plumbing quality issues can arise during new construction or renovation of premise plumbing. There has been little research done on many of these concerns and therefore few guidelines or regulations are in place to protect the health of the consumer or the integrity of the plumbing infrastructure. This work examines common construction practices including: 1) effect of residual construction debris, 2) shock chlorination of new plumbing lines, and 3) lead leaching propensity of new brass ball valves. During installation of plumbing systems, residual chemicals and debris including copper brass particles and flux, can be left in plumbing lines following construction and installation. This debris is considered undesirable from health, aesthetic, and corrosion perspectives. Soldering flux is of particular concern due to its corrosive nature. Experiments were conducted to determine the effects of residual solder flux, PVC glue, and metallic debris and to quantify flushing velocities and durations to effectively remove them from a new plumbing system. A flushing velocity of 3 fps for 30 minutes is needed to remove water soluble flux, while petroleum based flux still persists after extensive flushing at 7 fps. Currently a practice known as shock chlorination, whereby super chlorinated water is used for disinfection, is used in water mains after installation or repair as specified in the ANSI/AWWA C651 Standard. This practice is now starting to be required by some building codes in premise plumbing for new construction. Water mains are typically made of concrete where as premise plumbing using copper or PVC piping. Copper pipe is susceptible to attack by high chlorine, and this reaction will also remove the chlorine residual. There is concern about potential damage to copper from free chlorine and that in some systems targeted residuals of chlorine might not be obtained. Experiments did not detect serious damage to copper pipe, but in some waters it was not possible to meet targeted residual levels of chlorine. The addition of orthophosphate corrosion inhibitor or adjustment of pH can sometimes reduce the chlorine decay rate. Extremely high and persistent lead leaching in a brand new building at the University of North Carolina (UNC) traced to leaded bronze ball valves, prompted an extensive forensic evaluation how existing standards (National Sanitation Foundation Section 8) could allow for installation of products that could create a human health hazard due to high lead. Diffusion of lead from within the device to water in the pipe, high velocity, microbial activity and other factors caused more leaching in practice than would be expected based on NSF testing and normalization factors applied to certify a valve as safe. Moreover, use of flux during soldering of joints, increased lead leaching by orders of magnitude relative to results of NSF testing without flux. / Master of Science
2

Reconsidering Lead Corrosion in Drinking Water: Product Testing, Direct Chloramine Attack and Galvanic Corrosion

Dudi, Abhijeet 26 October 2004 (has links)
The ban on lead plumbing materials in the Safe Drinking Water Act (1986) and the EPA Lead and Copper Rule (1991) have successfully reduced lead contamination of potable water supplies. The success of these regulations gave rise to a belief that serious lead contamination was an important past problem that had been solved, and that additional fundamental research was therefore unnecessary. This work carefully re-examined the lead contamination issue from the perspective of 1) new regulations causing a shift from chlorine to chloramine disinfectant, 2) assumptions guiding sampling strategies, 3) existing performance standards for brass, and 4) galvanically driven corrosion of lead bearing plumbing materials. The results were instrumental in uncovering and understanding a serious problem with lead contamination in Washington, D.C. A critical reading of the literature indicates that chloramines can accelerate corrosion of lead bearing materials and increase lead contamination of water. When a new sampling protocol was conceived and used in Washington homes to assess the nature of the problem, hazardous levels of lead were found to be present in some drinking water samples. Contrary to the conventional wisdom, lead was not always highest in first draw samples, but often increased with flushing. This has several important implications for monitoring and public health. For instance, well-intentioned public education materials were causing consumers to drink water containing very high levels of lead in some circumstances. Laboratory and field-testing proved that chloramines were causing serious lead corrosion problems. That testing also discovered that, unbeknownst to scientists and utilities, free chlorine itself can act as a corrosion inhibitor, reducing lead solubility and contamination of water. The net result is that changing disinfectant from free chlorine to chloramine can sometimes trigger serious lead contamination of water. While the worst problems with lead in Washington, D.C. came from the lead services, significant levels of lead were occasionally sampled from homes with solders or brass as the lead source. This prompted re-evaluation of the ANSI/NSF 61, Section 8 standard, which is relied on to protect public health from in-line brass plumbing devices that might leach excessive lead to potable water. In-depth study of the standard revealed serious flaws arising from use of a phosphate buffer in the test waters and a failure to control carbonate dissolution from the atmosphere. Due to these deficiencies, small devices made of pure lead could actually pass the performance test. The public therefore has no assurance that devices passing NSF Section 8 testing are safe and reforms to the standard are obviously needed. Other problems arise from connecting copper pipe to lead bearing plumbing in practice. The copper is cathodic and dramatically accelerates corrosion of the lead anode via a galvanic current. Corrosion and hydrolysis of released Pb²⁺ can lower pH near the surface of the lead and increase its solubility. A similar galvanic effect can arise from cupric ions present in the water via deposition corrosion mechanism. In cases where part of a lead service line is replaced by copper pipe, the galvanic corrosion effect can create a serious long-term problem with lead contamination. Such partial lead service line replacements are occurring in many US cities and the practice should be stopped. Lead contamination of potable water is not only a problem of the past but also of the present. While additional research is necessary before regulators, utilities and homeowners can anticipate and mitigate such problems with confidence, this work provides sound fundamental basis for future progress. / Master of Science

Page generated in 0.0527 seconds