• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional ionic liquids in crystal engineering and drug delivery

Bansode, Ratnadeep Vitthal January 2016 (has links)
The objective of this research is to explore the use of ionic liquds in crystal engineering and drug delivery. Ionic liquids have a wide range of applications in pharmaceutical field due to their unique physicochemical propertie ssuch as chemical, thermal stability, low melting point, nonvolatility, nonflamability, low toxicity and recyclability which offer unique and interesting potential for pharmaceuitcal applications. Currently, many research groups are working on the development of ionic liquids to use in this field but there is need to develop systematic understanding about new techniques for synthesis and applications of ionic liquids to obtain new crystal form and potential of drug ionic salts. The synthesis of fifteen phosphonium ionic liquids under microwave irradiation and their physicochemical properties was investigated. The reaction time was significantly reduced compared to conventional methods, and higher yields were reported. The crystallisation of pharmaceutical drugs such as sulfathiazole, chlorpropamide, phenobarbital and nifedipine were investigated using imidazolium ionic liquids. The supramolecular complex of sulfathiazole and phenobarbital with imidazolium ionic liquids and polymorphic change in chlorpropamide was achieved. The ionic liquids provides unique environment for the crystallisation. The imidazolium salts of ibuprofen and diclofenac were synthesised and evaluated for physicochemical properties and their pharmaceutical performances especially transdermal absorption. The investigation of physicochemcal properties and pharmaceutical performance of imidazolium drug salts indicated opportunity to optimise lipophilicity and other physicochemical properties such as molecular size, osmolality, viscosity to achieve desired skin deposition and permeation. This study will provide a new approach to design of new drug salts develop using the interdisciplinary knowledge of chemical synthesis and drug delivery.
2

Functional ionic liquids in crystal engineering and drug delivery

Bansode, Ratnadeep V. January 2016 (has links)
The objective of this research is to explore the use of ionic liquds in crystal engineering and drug delivery. Ionic liquids have a wide range of applications in pharmaceutical field due to their unique physicochemical propertie ssuch as chemical, thermal stability, low melting point, nonvolatility, nonflamability, low toxicity and recyclability which offer unique and interesting potential for pharmaceuitcal applications. Currently, many research groups are working on the development of ionic liquids to use in this field but there is need to develop systematic understanding about new techniques for synthesis and applications of ionic liquids to obtain new crystal form and potential of drug ionic salts. The synthesis of fifteen phosphonium ionic liquids under microwave irradiation and their physicochemical properties was investigated. The reaction time was significantly reduced compared to conventional methods, and higher yields were reported. The crystallisation of pharmaceutical drugs such as sulfathiazole, chlorpropamide, phenobarbital and nifedipine were investigated using imidazolium ionic liquids. The supramolecular complex of sulfathiazole and phenobarbital with imidazolium ionic liquids and polymorphic change in chlorpropamide was achieved. The ionic liquids provides unique environment for the crystallisation. The imidazolium salts of ibuprofen and diclofenac were synthesised and evaluated for physicochemical properties and their pharmaceutical performances especially transdermal absorption. The investigation of physicochemcal properties and pharmaceutical performance of imidazolium drug salts indicated opportunity to optimise lipophilicity and other physicochemical properties such as molecular size, osmolality, viscosity to achieve desired skin deposition and permeation. This study will provide a new approach to design of new drug salts develop using the interdisciplinary knowledge of chemical synthesis and drug delivery. / Social Justice Department, Government of Maharashtra, India.

Page generated in 0.0561 seconds