• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

α-Secretase processing of the Alzheimer amyloid-β precursor protein and its homolog APLP2

Jacobsen, Kristin January 2013 (has links)
The amyloid-β precursor protein (APP) has been widely studied due to its role in Alzheimer´s disease (AD). When APP is sequentially cleaved by β- and γ-secretase, amyloid-β (Aβ) is formed. Aβ is prone to aggregate and is toxic to neurons. However, the main processing pathway for APP involves initial cleavage at the α-site, within the Aβ region, instead generating a neuroprotective soluble fragment, sAPPα. APP is a member of a protein family, also including the proteins APLP1 and APLP2, which are processed in a similar way as APP. In addition, K/O studies in mice have shown that the three proteins have overlapping functions where APLP2 play a key physiological role. The aim of this thesis was to study mechanisms underlying the α-secretase processing of APP and APLP2. We have used the human neuroblastoma cell-line SH-SY5Y as a model system and stimulated α-secretase processing with insulin-like growth factor-1 (IGF-1) or retinoic acid (RA). Our results show that the stimulated α-site cleavage of APP and APLP2 is regulated by different signaling pathways and that the cleavage is mediated by different enzymes. APP was shown to be cleaved by ADAM10 in a PI3K-dependent manner, whereas APLP2 was cleaved by TACE in a PKC-dependent manner. We further show that protein levels and maturation of ADAM10 and TACE is increased in response to RA, mediated by a PI3K- or PKC-dependent signaling pathway, respectively. Another focus of our research has been O-GlcNAcylation, a dynamic post-translational modification regulated by the enzymes O-GlcNAc transferase and O-GlcNAcase (OGA). We show that decreased OGA activity stimulates sAPPα secretion, without affecting APLP2 processing. We further show that ADAM10 is O-GlcNAcylated. Lastly, we show that APP can be manipulated to be cleaved in a similar way as APLP2 during IGF-1 stimulation by substituting the E1 domain in APP with the E1 domain in APLP2. Together our results show distinct α-site processing mechanisms of APP and APLP2. / <p>At the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 4: Manuscript; Paper 5: Manuscript.</p>
2

Proteolytic processing of the Alzheimer APP protein family during neuronal differentiation

Holback, Sofia January 2009 (has links)
Increased amyloid-β (Aβ) load in the brain, neurite degeneration, neuronal loss, and decreased levels of several neurotrophins are among the characteristics of Alzheimer’s disease (AD). Generation of Aβ occurs when the amyloid precursor protein (APP) is proteolytically processed by β- and γ-secretases in the amyloidogenic pathway. However, Aβ formation is prevented if APP is cleaved by α- and γ- secretases in the non-amyloidogenic pathway. The normal function of APP is still not fully known. It seems clear that the different fragments that are produced during proteolytic processing have different bioactive properties. APP and its metabolites have been implicated in neurite outgrowth, synaptogenesis, cell adhesion, neuroprotection and apoptosis. The aim of this thesis was to investigate how neurotrophic factors affect the synthesis and processing of APP and its two mammalian paralogues the APP-like protein-1 and-2 (APLP1 and APLP2). We also wanted to determine how the expression levels of α- and β- secretases were affected in response to these factors. In addition, we wanted to analyze if the levels and function of the most well characterized APP adaptor protein, Fe65, was regulated during neuronal differentiation. Our results show that retinoic acid (RA), insulin-like growth factor-1 (IGF-1), and brain derived neurotrophic factor (BDNF) all regulate expression levels and processing of the APP protein family. Interestingly, the increased processing of the APP family involves different signaling pathways. The PI3-K/Akt pathway is involved in IGF-1-induced APP and APLP1, but not APLP2, processing. In addition, RA-induced expression of the α-secretase, a disintegrin and metalloproteinase (ADAM) 10 is dependent on PI3-K, whereas PKC is involved in RA-induced expression of another α-secretase, ADAM17/TACE. Furthermore, we present evidence that maturation of the adaptor protein Fe65, as well as its docking to APP, increases concomitant with neuronal differentiation. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript.
3

Implication du domaine intracellulaire du précurseur de la protéine amyloïde dans la modulation de la plasticité synaptique

Trillaud-Doppia, Émilie 04 1900 (has links)
Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease. / La maladie d’Alzheimer est la forme la plus commune de démence liée au vieillissement ; elle est caractérisée par des déficits précoces d’apprentissage et de mémorisation et entraîne à terme une perte généralisée des fonctions cognitives supérieures. Alors que l’amyloïde-bêta (Aβ) et la protéine tau sont traditionnellement associées au développement de la maladie d’Alzheimer, des études récentes suggèrent que d’autres facteurs, tels que le domaine intracellulaire (APP-ICD) du précurseur de la protéine amyloïde (APP), pourraient jouer un rôle. Dans notre étude, nous avons testé si l’APP-ICD pourrait affecter les mécanismes de transmission ou de plasticité synaptique dans l’hippocampe, qui sous-tendent les processus d’apprentissage et de mémorisation. Nos résultats ont indiqué que la surexpression de l’APP-ICD dans des neurones du CA1 de l’hippocampe entraînait une diminution de la transmission synaptique dépendante des récepteurs AMPA et NMDA. Notre étude a montré que cet effet était spécifique de l’APP-ICD puisque son plus proche homologue l’APLP2-ICD n’a pas eu cet effet. De plus, l’APP-ICD entraînait un blocage de la potentialisation à long terme (LTP), une augmentation de l’expression et une facilitation de l’induction de la dépression à long terme (LTD), mais l’APLP2-ICD n’a eu aucun de ces effets. Notre étude a montré que cette différence observée en transmission et en plasticité synaptique entre les deux peptides réside dans le changement d’une seule alanine dans l’APP-ICD pour une proline dans l’APLP2-ICD, et que l’APP(PAV)-ICD n’avait pas d’effet sur la plasticité synaptique. Nous avons aussi démontré que l’APLP2(AAV)-ICD mimait l’effet de l’APP-ICD pour la facilitation de la LTD. Ensuite nous avons montré que la longue forme APP-APLP2-APP (APP avec un changement de la séquence de l’Aβ pour celle homologue de l’APLP2) ne montrait pas d’effet en comparaison avec l’APP-ICD, ni sur la transmission synaptique ni sur la plasticité synaptique. Cependant, en activant le clivage par les caspases préalablement à l’induction de la LTD ou la LTP, nous avons observé une facilitation de la LTD et un iii blocage de la LTP avec l’APP-APLP2-APP, des effets que nous n’avons pas reproduit avec la longue forme APLP2. La thréonine 668 phosphorylable se trouve immédiatement après l’alanine et le site de clivage par les caspases dans l’APP-APLP2-APP. La mutation de la Thr668 pour une alanine a aboli son effet sur la LTD et restauré la LTP. Finalement, nous avons montré que la facilitation de la LTD par l’APP-APLP2-APP dépendait de la libération de calcium intracellulaire par les récepteurs ryanodines. En conséquence, nous proposons l’émergence d’un nouveau domaine de l’APP jouant un rôle critique, en plus de l’Aβ, dans les processus à la base de l’apprentissage et qui en conséquence pourrait jouer un rôle dans le développement de la maladie d’Alzheimer.
4

Processing of the amyloid precursor protein and its paralogues amyloid precursor-like proteins 1 and 2

Adlerz, Linda January 2007 (has links)
Alzheimer’s disease (AD) is a neurodegenerative disorder which is histopathologically characterised by amyloid plaques and neurofibrillary tangles. Amyloid plaques consist of the amyloid β-peptide (Aβ) that can form aggregates in the brain. Aβ is generated from the amyloid precursor protein (APP) through proteolytic cleavage. APP belongs to a conserved protein family that also includes the two paralogues, APP-like proteins 1 and 2 (APLP1 and APLP2). Despite the immense amount of research on APP, motivated by its implication in AD, the function of this protein family has not yet been determined. In this thesis, we have studied the expression and proteolytic processing of the APP protein family. Our results are consistent with previous findings that suggest a role for APP during neuronal development. Treatment of cells with retinoic acid (RA) resulted in increased synthesis. In addition, we observed that RA treatment shifted the processing of APP from the amyloidogenic to the non-amyloidogenic pathway. The proteins in the APP family have been hard to distinguish both with respect to function and proteolytic processing. However, for development of new drugs with APP processing enzymes as targets this is of great importance. Our studies suggest similarities, but also differences in the mechanism regulating the processing of the different paralogues. We found that brain-derived neurotrophic factor (BDNF) had different impact on the members of the APP family. Most interestingly, we also found that the mechanism behind the increased processing in response to IGF-1 was not identical between the homologous proteins. In summary, our results indicate that in terms of regulation APLP1 and APLP2 differ more from each other than from APP. Our studies open up the possibility of finding means to selectively block Aβ production without interfering with the processing and function of the paralogous proteins.

Page generated in 0.0232 seconds