• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single molecule characterization of the roles of long non-coding RNAs in eukaryotic transcription regulation

Rahman, Samir 05 1900 (has links)
Récemment, des analyses dans divers organismes eucaryotes ont révélé que l'ensemble du génome est transcrit et produit en plus des ARNs messagers, une grande variété d’ARNs non codants de différentes longueurs. Les ARNs non codants de plus de 200 nucleotides, classés comme longs ARNs non codants (LARNnc), représentent la classe la plus abondante de transcripts non codants. Les études des fonctions des LARNnc suggèrent que beaucoup d'entre eux seraient impliqués dans la régulation de la transcription. L'objectif de ma thèse de doctorat était d'élucider les mécanismes de la régulation transcriptionnelle médiée par des LARNnc dans différents systèmes eucaryotes. Dans mon premier projet, j'ai étudié le rôle d'un long ARN non codant antisens dans la régulation transcriptionnelle du gène PHO84, codant un transporteur de phosphate à haute affinité, chez S. cerevisiae. Des études antérieures ont montré que la suppression d’une proteine de l’exosome Rrp6 entraîne une augmentation de l'expression antisens et la répression de PHO84. Il a été suggéré que la perte de Rrp6 entraîne une stabilisation antisens au locus PHO84, entraînant le recrutement de l'histone de-acétylase Hda1 et la répression de PHO84. Cependant, le mécanisme par lequel Rrp6p régule la transcription de PHO84 n’était pas connu. En combinant des méthodes à l’échelle de cellule unique, des approches biochimiques et génétiques, nous avons montré que les niveaux d'ARN antisens sont régulés principalement lors de l'élongation par le complexe Nrd1-Nab3-Sen1, qui nécessite Rrp6 pour un recrutement efficace à l`extrémité 3`de PHO84. De plus, nous révélons l'expression anticorrelé du sens et de l'antisens, En résumé, nos données suggèrent que la transcription antisens régule le seuil d'activation du promoteur PHO84. Dans mon second projet, j'ai étudié les rôles des ARNs dérivés des amplificateurs (ARNa) dans la regulation de la transcription. En utilisant les cellules de cancer du sein MCF7 comme système modèle, nous avons cherché à déterminer comment les ARNa induits par l'oestrogène (E2) participent à la régulation de la transcription médiée par le recepteur d’oestrogène (ERα) au niveau de l'allèle unique. À l'aide de l’hybridation fluorescente à l’échelle de molécule unique (smFISH), nous avons révélé qu`après induction d'E2, les ARNa sont induits avec une cinétique similaire à celle des ARNm cibles, sont localisés exclusivement dans le noyau, principalement associés à la chromatine, et sont moins abondants que les ARNm. De manière surprenante, nous avons constaté que les ARNa sont rarement co-transcrits avec leurs loci cibles, indiquant que la transcription active des gènes ne nécessite pas la synthèse continue ou l'accumulation d'ARNa sur l'amplificateur. En outre, en utilisant des mesures de la distance à sous-diffraction, nous avons démontré que la cotranscription des ARNa et des ARNm se produit rarement dans une boucle amplificateurpromoteur. De plus, nous avons révélé que la transcription basale d'ARNa n'exige pas ERα ou l'histone méthyltransférase MLL1 qui active l'amplificateur par la mono-méthylation H3K4. Dans l'ensemble, nos résultats ont montré que les ARNa peuvent jouer un rôle lors de l'activation du promoteur, mais ne sont pas nécessaires pour maintenir la transcription de l'ARNm ou pour stabiliser les interactions amplificateur-promoteur. / Transcription is the initial step in gene expression and is subject to extensive regulation. Recently, analyses in diverse eukaryotes have revealed that in addition to protein coding genes, transcription occurs throughout the noncoding genome, producing non-coding RNAs of various lengths. Non-coding RNAs longer than 200 nucleotides, classified as long non-coding RNAs (lncRNAs), represent the most abundant class of non-coding transcripts, whose functions however are poorly understood. Recent studies suggest that many lncRNAs might have roles in transcription regulation. The goal of my PhD thesis was to elucidate the mechanisms of lncRNA mediated transcription regulation in different eukaryotic systems. For my first project, I investigated the role of an antisense long noncoding RNA in transcription regulation of the high-affinity phosphate transporter gene PHO84 in the unicellular eukaryote S. cerevisiae. Previous studies showed that deletion of the nuclear exosome component Rrp6 results in increased antisense expression and repression of PHO84. It was suggested that the loss of Rrp6 results in antisense stabilization at the PHO84 locus, leading to recruitment of the histone de-acetylase Hda1 and repression of PHO84. However, most of the mechanistic details of how Rrp6p functions in regulating PHO84 transcription were not understood. Combining single cell methods with biochemical and genetic approaches, we showed that antisense RNA levels are regulated primarily during transcriptional elongation by the Nrd1-Nab3-Sen1 complex, which requires Rrp6 for efficient recruitment to the 3’end of PHO84. Furthermore, we reveal anti-correlated expression of sense and antisense, which have distinct modes of transcription. In summary, our data suggest a model whereby antisense transcriptional read-through into the PHO84 promoter regulates the activation threshold of the gene. For my second project, I investigated the roles of enhancer derived RNAs (eRNAs). eRNAs are lncRNAs transcribed from enhancers that have been suggested to regulate transcription through different mechanisms, including enhancer-promoter looping, RNA polymerase elongation, and chromatin remodeling. However, no coherent model of eRNA function has yet emerged. Using MCF7 breast cancer cells as a model system, we sought to determine how estrogen (E2) induced eRNAs participate in estrogen receptor alpha (ERα) mediated transcription regulation at the single allele level. Using single molecule fluorescent in situ hybridization (smFISH), we revealed that upon E2 induction eRNAs are induced with similar kinetics as target mRNAs, but are localized exclusively in the nucleus, mostly chromatin associated, and are less abundant than mRNAs. Surprisingly, we found that eRNAs are rarely co-transcribed with their target loci, indicating that active gene transcription does not require the continuous synthesis or accumulation of eRNAs at the enhancer. Furthermore, using sub-diffraction-limit distance measurements, we demonstrated that co-transcription of eRNAs and mRNAs rarely occurs within a closed enhancer-promoter loop. Moreover, we revealed that basal eRNA transcription does not require ERα or the histone methyltransferase MLL1, which activates the enhancer through H3K4 mono-methylation. Altogether, our findings showed that eRNAs may play a role during promoter activation, but are not required to sustain mRNA transcription or stabilize enhancer-promoter looping interactions.

Page generated in 0.0647 seconds