• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data sufficiency analysis for automatic speech recognition / by J.A.C. Badenhorst

Badenhorst, Jacob Andreas Cornelius January 2009 (has links)
The languages spoken in developing countries are diverse and most are currently under-resourced from an automatic speech recognition (ASR) perspective. In South Africa alone, 10 of the 11 official languages belong to this category. Given the potential for future applications of speech-based information systems such as spoken dialog system (SDSs) in these countries, the design of minimal ASR audio corpora is an important research area. Specifically, current ASR systems utilise acoustic models to represent acoustic variability, and effective ASR corpus design aims to optimise the amount of relevant variation within training data while minimising the size of the corpus. Therefore an investigation of the effect that different amounts and types of training data have on these models is needed. With this dissertation specific consideration is given to the data sufficiency principals that apply to the training of acoustic models. The investigation of this task lead to the following main achievements: 1) We define a new stability measurement protocol that provides the capability to view the variability of ASR training data. 2) This protocol allows for the investigation of the effect that various acoustic model complexities and ASR normalisation techniques have on ASR training data requirements. Specific trends with regard to the data requirements for different phone categories and how these are affected by various modelling strategies are observed. 3) Based on this analysis acoustic distances between phones are estimated across language borders, paving the way for further research in cross-language data sharing. Finally the knowledge obtained from these experiments is applied to perform a data sufficiency analysis of a new speech recognition corpus of South African languages: The Lwazi ASR corpus. The findings correlate well with initial phone recognition results and yield insight into the sufficient number of speakers required for the development of minimal telephone ASR corpora. / Thesis (M. Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.
2

Data sufficiency analysis for automatic speech recognition / by J.A.C. Badenhorst

Badenhorst, Jacob Andreas Cornelius January 2009 (has links)
The languages spoken in developing countries are diverse and most are currently under-resourced from an automatic speech recognition (ASR) perspective. In South Africa alone, 10 of the 11 official languages belong to this category. Given the potential for future applications of speech-based information systems such as spoken dialog system (SDSs) in these countries, the design of minimal ASR audio corpora is an important research area. Specifically, current ASR systems utilise acoustic models to represent acoustic variability, and effective ASR corpus design aims to optimise the amount of relevant variation within training data while minimising the size of the corpus. Therefore an investigation of the effect that different amounts and types of training data have on these models is needed. With this dissertation specific consideration is given to the data sufficiency principals that apply to the training of acoustic models. The investigation of this task lead to the following main achievements: 1) We define a new stability measurement protocol that provides the capability to view the variability of ASR training data. 2) This protocol allows for the investigation of the effect that various acoustic model complexities and ASR normalisation techniques have on ASR training data requirements. Specific trends with regard to the data requirements for different phone categories and how these are affected by various modelling strategies are observed. 3) Based on this analysis acoustic distances between phones are estimated across language borders, paving the way for further research in cross-language data sharing. Finally the knowledge obtained from these experiments is applied to perform a data sufficiency analysis of a new speech recognition corpus of South African languages: The Lwazi ASR corpus. The findings correlate well with initial phone recognition results and yield insight into the sufficient number of speakers required for the development of minimal telephone ASR corpora. / Thesis (M. Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.
3

Effective automatic speech recognition data collection for under–resourced languages / de Vries N.J.

De Vries, Nicolaas Johannes January 2011 (has links)
As building transcribed speech corpora for under–resourced languages plays a pivotal role in developing automatic speech recognition (ASR) technologies for such languages, a key step in developing these technologies is the effective collection of ASR data, consisting of transcribed audio and associated meta data. The problem is that no suitable tool currently exists for effectively collecting ASR data for such languages. The specific context and requirements for effectively collecting ASR data for underresourced languages, render all currently known solutions unsuitable for such a task. Such requirements include portability, Internet independence and an open–source code–base. This work documents the development of such a tool, called Woefzela, from the determination of the requirements necessary for effective data collection in this context, to the verification and validation of its functionality. The study demonstrates the effectiveness of using smartphones without any Internet connectivity for ASR data collection for under–resourced languages. It introduces a semireal– time quality control philosophy which increases the amount of usable ASR data collected from speakers. Woefzela was developed for the Android Operating System, and is freely available for use on Android smartphones, with its source code also being made available. A total of more than 790 hours of ASR data for the eleven official languages of South Africa have been successfully collected with Woefzela. As part of this study a benchmark for the performance of a new National Centre for Human Language Technology (NCHLT) English corpus was established. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2012.
4

Effective automatic speech recognition data collection for under–resourced languages / de Vries N.J.

De Vries, Nicolaas Johannes January 2011 (has links)
As building transcribed speech corpora for under–resourced languages plays a pivotal role in developing automatic speech recognition (ASR) technologies for such languages, a key step in developing these technologies is the effective collection of ASR data, consisting of transcribed audio and associated meta data. The problem is that no suitable tool currently exists for effectively collecting ASR data for such languages. The specific context and requirements for effectively collecting ASR data for underresourced languages, render all currently known solutions unsuitable for such a task. Such requirements include portability, Internet independence and an open–source code–base. This work documents the development of such a tool, called Woefzela, from the determination of the requirements necessary for effective data collection in this context, to the verification and validation of its functionality. The study demonstrates the effectiveness of using smartphones without any Internet connectivity for ASR data collection for under–resourced languages. It introduces a semireal– time quality control philosophy which increases the amount of usable ASR data collected from speakers. Woefzela was developed for the Android Operating System, and is freely available for use on Android smartphones, with its source code also being made available. A total of more than 790 hours of ASR data for the eleven official languages of South Africa have been successfully collected with Woefzela. As part of this study a benchmark for the performance of a new National Centre for Human Language Technology (NCHLT) English corpus was established. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2012.

Page generated in 0.0419 seconds