1 |
Studium fake-tau pozadí na experimentu ATLAS / Study of fake-tau background with the ATLAS experimentMartinovicová, Gabriela January 2021 (has links)
Title: Study of fake-tau background with the ATLAS experiment Author: Gabriela Martinovicová Institute: Institute of Particle and Nuclear Physics Supervisor: Mgr. Vojtěch Pleskot, Ph.D., Institute of Particle and Nuclear Physics Abstract: The τ-leptons are the important final-state components, not only in the Standard Model processes but also in the processes beyond the Standard Model studied at the ATLAS experiment at CERN. They are characterized by mostly decaying into hadrons with one or three charged particles and, in most cases, with at least one neutral pion in the final-state. Due to their short decay length, only their decay products are observed in the detector. Jets naturally fake hadronically decaying τ leptons, so it is necessary to estimate such a fake-τ background. The Fake Factor method uses a correction factor, called fake factor (FF), measured from the data and applied to the data to estimate the fake-τ background in a given signal region. One of the complications is that FF differs for τ candidates faked by jets derived from quarks or gluons and thus must be measured in the control region with the same fraction of quark jets as in the signal region. The solution to this problem is the universal FF method, which proposed that from the FFs measured in samples with a large difference in the...
|
2 |
A search for a light charged Higgs Boson decaying to cs at √s = 7 TeVMartyniuk, Alex January 2011 (has links)
A search for a light charged Higgs boson decaying into cs is presented using data recorded in pp collisions at √s = 7 TeV. The analysis uses a data sample corresponding to an integrated luminosity of 35.3 pb⁻¹ collected by the ATLAS detector at the LHC between June and November 2010. The search is based on the semi-leptonic tt channel searching for the process t → H⁺b where H⁺ → cs⁻. The invariant mass distribution of the dijet system consistent with the hadronic decay of a W⁺ is used to search for a secondary bump from hadronic H⁺ decays. With no observation of the charged Higgs signal, 95% confidence level upper limits on the decay branching ratio of top quarks to charged Higgs bosons are set as a function of the charged Higgs boson mass.
|
3 |
Search for the Lepton Flavor Violating Decay <i>Z</i>→<i>eμ</i>Fernando, Waruna Sri 14 December 2010 (has links)
No description available.
|
4 |
Measurement of the invisible width of the Z boson using the ATLAS detectorRyder, Nicholas Charles January 2013 (has links)
The invisible width of the Z boson is its partial width to neutrinos and is a well known Standard Model quantity. A direct measurement of the Z boson’s invisible width has been performed using the ATLAS detector. The width was measured to be Γ(Z → inv) = 481 ± 5(stat.) ± 22(syst.), which rivals the precision of the direct measurements performed by the LEP experiments. Such a precise was measurement performed by measuring the ratio of Z → νν to Z → ee events and correcting for the differences between the neutrino and electron selections. The measurement is sensitive to any non Standard Model interactions with a jet(s) + undetected particle final state. No evidence was found for a deviation from the Standard Model, however improvements have been suggested to allow more sensitivity to new phenomena at high energies.
|
5 |
Observation of spin correlations in tt̄ events at √s = 7 TeV using the ATLAS detectorHowarth, James William January 2014 (has links)
This thesis presents measurements of the the spin correlation strength in top anti-top quark pair production at the LHC using the ATLAS detector. The data used corresponds to 4.6 fb−1 of integrated luminosity taken during 2011 at the LHC at a center of mass energy of 7 TeV. The spin correlation is studied utilising different observables with different sensitivities to the production mechanism, in particular to gluon-gluon fusion in the like or unlike helicity state, quark anti- quark annihilation in the unlike helicity state, or a combination of the three. In addition cuts are made on the invariant mass of the ttbar system to enhance or suppress contributions from different initial state production mechanisms. The analysis presented is a precision test of both ttbar production and decay in the SM. These measurements are compared to the most current theoretical predictions. No deviation from the SM expectation was observed. In a subset of the data, corresponding to an integrated luminosity of 2.1 fb−1, the hypothesis of zero spin correlation is excluded at 5.1 standard deviations.
|
6 |
Top polarization measurement in single top quark production with the ATLAS detector / Mesure de la polarisation dans la production électrofaible de quark top avec le détecteur ATLASSun, Xiaohu 01 October 2013 (has links)
La polarisation du quark top produit par interaction électrofaible (single-top) en voie-t permet de tester la structure du vertex Wtb: le couplage vecteur gauche prévu dans le cadre du Modèle Standard (MS), ainsi que les couplages anormaux vecteur ou tenseur introduits par plusieurs théories au-delà du Modèle Standard. Le lot de données correspondant à une luminosité integrée de 4,7 fb-1 recolté dans les collisions proton-proton à une énergie de 7 TeV dans le centre de masse offre une chance de mesurer la polarisation du quark top. Cette thèse traite de la mesure de la polarisation du quark top grâce à l'étude des distributions angulaires polarisées dans des bases spécifiques avec les événements single-top produits en voie-t. Au début du document, le contexte théorique de production du quark top par interaction forte et électrofaible au LHC est introduit. Ensuite, le détecteur, les performances de reconstruction ainsi que la sélection d'événements avec une signature single-top en voie-t, sont décrits. Les méthodes d' "unfolding" et de "folding" sont présentées et testées avec différentes configurations afin de mesurer la polarisation du quark top. Les résultats obtenus, ainsi que les incertitudes théorique, expérimentales et statistiques, sont examinées. Il s'agit de la première mesure de polarisation du quark top avec le détecteur ATLAS. Les résultats sont compatibles avec les prédictions MS, et contribuent donc à contraindre de maniére significative les couplages anormaux sur le vertex Wtb. / The top quark polarization in electroweak production for single top t-channel allows to test the structure of the Wtb vertex: the left-handed vector coupling of the Standard Model (SM) as well as the anomalous couplings including the right-handed vector, the left-handed tensor and the right-handed tensor couplings. The 4.7 fb-1 data recorded by the ATLAS detector at the LHC with the center of mass energy at 7 TeV in 2011 provides a chance to measure the top polarization. This thesis discusses the measurement of the top polarization by studying the polarized angular distributions in specific bases with t-channel single top events. In the beginning of the thesis, a theoretical context of the top quark production via the strong interaction and the electroweak interaction at the LHC is introduced. Then the detector, the reconstruction performances as well as the event selections with a single top t-channel event signature are described. To measure the top polarization, the unfolding and folding methods are constructed and tested with different configurations. In the end, the measured results are examined with the estimated uncertainties from the theory, the detector response and modeling as well as the statistics. This is the first measurement of the top polarization with the ATLAS detector. The results are compatible with the SM predictions and contribute signicantly to constrain the anomalous couplings in the Wtb vertex
|
7 |
Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS ExperimentSeifert, Frank 10 January 2013 (has links)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements.
Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area.:Contents
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24
2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29
2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34
3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42
3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55
4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55
4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58
4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61
4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62
4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63
4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67
4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72
4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80
5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89
5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89
5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90
5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92
5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106
5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons
and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108
5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110
5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111
5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112
5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112
5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112
5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115
6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123
B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden.
Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.:Contents
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24
2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29
2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34
3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42
3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55
4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55
4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58
4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61
4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62
4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63
4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67
4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72
4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80
5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89
5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89
5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90
5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92
5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106
5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons
and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108
5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110
5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111
5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112
5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112
5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112
5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115
6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123
B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
|
8 |
Calibration of the Liquid Argon Calorimeter and Search for Stopped Long-Lived ParticlesMorgenstern, Stefanie 06 May 2021 (has links)
This thesis dives into the three main aspects of today's experimental high energy physics: detector operation and data preparation, reconstruction and identification of physics objects, and physics analysis.The symbiosis of these is the key to reach a better understanding of the underlying principles of nature. Data from proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector during 2015-2018 are used.
In the context of detector operation and data preparation, the data quality assessment for the Liquid Argon calorimeter of the ATLAS experiment is improved by an adaptive monitoring of noisy channels and mini noise bursts allowing an assessment of their impact on the measured data at an early stage.
Besides data integrity, a precise energy calibration of electrons, positrons and photons is essential for many physics analyses and requires an excellent understanding of the detector. Corrections of detector non-uniformities originating from gaps in between the Liquid Argon calorimeter modules and non-nominal high voltage settings are derived and successfully recover the homogeneity in the energy measurement. A further enhancement is reached by introducing the azimuthal position of the electromagnetic cluster in the calibration algorithm. Additionally, a novel approach to exploit tracking information in the historically purely calorimeter-based energy calibration for electrons and positrons is presented.
Considering the track momentum results in an about 30% better energy resolution for low-pT electrons and positrons. The described optimisation of the energy calibration is especially beneficial for precision measurements which are one way to test and challenge our current knowledge of the Standard Model of particle physics. Another path is the hunt for new particles, here presented by a search for stopped long-lived particles suggested by many theoretical models.
This analysis targets gluinos which are sufficiently long-lived to form quasi-stable states and come to rest in the detector.
Their eventual decay results in large energy deposits in the calorimeters.
The special nature of the expected signature requires the exploration of non-standard datasets and reconstruction methods.
Further, non-collision backgrounds are dominant for this search which are investigated in detail. In the context of simplified supersymmetric models an expected signal sensitivity of more than 3σ for gluinos with a mass up to 1.2 TeV and a lifetime of 100 μs is achieved.
|
9 |
Search for the Standard Model Higgs boson produced in association with a pair of top quarks and decaying into a bb-pair in the single lepton channel at sqrt{s} = 8 TeV with the ATLAS experiment at the LHCSerkin, Leonid 03 August 2016 (has links)
No description available.
|
10 |
A study of longitudinal Hadronic shower leakage and the development of a correction for its associated effects at √s = 8 TeV with the ATLAS detectorGupta, Shaun January 2015 (has links)
In the high energy environment of the Large Hadron Collider, there is a finite probability for the longitudinal tail of the hadronic shower represented by a jet to leak out of the calorimeter, commonly referred to as longitudinal hadronic shower leakage, or jet 'punchthrough'. This thesis prescribes a method for identifying such 'punch-through' jets via the use of muon activity found behind a jet in the ATLAS muon spectrometer, finding an occurrence rate of up to 18% in the worst affected regions. 'Punch-through' jets were found to degrade the measured jet energy scale by up to 30%, and jet energy resolution by a factor of 3. A correction to remove these effects was developed in Monte Carlo and validated in data, with associated systematic uncertainties derived. The correction was found to negate the degradation of the measured jet energy scale, improving the jet energy resolution by up to 10% in the worst affected regions, and up to 1.6% overall. The correction was integrated into the final 2012 ATLAS jet energy calibration scheme as the fifth step of the Global Sequential corrections. The prescription developed in this thesis to derive the correction is currently being used by ATLAS in Run II of the Large Hadron Collider.
|
Page generated in 0.0165 seconds