• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In silico and in vitro determination of substrate specificity for Breast Cancer Resistance Protein (BCRP) transporter at the blood-brain barrier

Wang, Fen January 2021 (has links)
Background The Breast Cancer Resistance Protein (BCRP) drug transporter is important for drug disposition and plays a critical role in regulating drug entry into the brain. Its substrate spectrum overlaps with substrates of Multi Drug Resistance Protein 1 (MDR1, P-gp), which influences and complicates the interpretation of data on drug distribution into tissues (e.g. brain). Distinguishing BCRP mediated transport from the transport by the MDR1 is often problematic. However, with new in vitro tools, this is now possible. In this project, two drug compounds, i.e. Dantrolene and Ritonavir, were investigated using these new in vitro models. The results from the experimental in vitro assay were matched with molecular dynamics (MD) simulations. Using coarse-grained (CG) simulations, a model of the BCRP transporter in a lipid bilayer was built, this model is based on the human BCRP structure revealed by Taylor et al (2017). Simulations were run for Dantrolene (a known substrate of BCRP) independently three times, and another with Ritonavir (a non-substrate) three times. Aim To determine substrate specificity for the BCRP transporter for two compounds, and to construct a CG model of BCRP transporter to see whether in silico methods can be used as an alternative for assessing substrate specificity.  Methods Madin-Darby canine kidney (MDCK) II cell line with no endogenous canine MDR1 (cMDR1) expression (MDCKcMDR1-KO), overexpressing human MDR1 (hMDR1) (MDCK-hMDR1cMDR1-KO) and stable expression of human BCRP (hBCRP) (MDCK-hBCRPcMDR1-KO) cells were cultured and used in Transwell experiments. Samples were analyzed using LC-MS/MS to determine the substrate concentrations. Apparent permeability and efflux ratio was calculated and evaluated.  MD simulations used the Martini 3 CG force field, and were run with Gromacs (version 2020.4). Tools including MODELLER, INSANE and others were used to construct the initial model (Webster, 2000; Wassenaar et al., 2015), for parameterization of substrate and non-substrate molecules. And visual inspection was done with the visual molecular dynamics (VMD) program and PyMOL. Results In vitro transport experiment confirmed that Dantrolene is a BCRP specific substrate, and Ritonavir is MDR1 specific substrate. Following simulations of these two compounds, Dantrolene is observed to stay in the transmembrane domains (TMD) for a certain period (on average several hundreds of nanoseconds), while Ritonavir is not found to bind in the TMD, which provides a proof of concept for future studies.
2

Microarray-based Detection for Multidrug Resistance in Human Tumours by Expression Profiling of ABC Transporter Genes and for Small B-cell non Hodgkin's Lymphoma Characterization. <br /><br /> Damier à ADN de faible densité pour la détection des gènes ABC transporteurs dans les tumeurs humaines et pour la caractérisation des lymphomes non Hodgkiniens à petites cellules B.

Gillet, Jean-Pierre 25 April 2006 (has links)
The multiplication of new markers used for diagnosis addresses new challenges in routine medical practice. One outstanding question is; how can we profile tumor markers expression using a meaningful and practical method for clinical purposes? Over the last 6 years, the microarray technology made a significant contribution to our understanding of many medical conditions. Benefiting from EAT’s expertise, we decided to design two cutting edge low density microarrays tools to study on one hand, ATP-binding cassette genes-mediated chemotherapy resistance and on the other hand, to characterize subtypes of Small B-Cell non-Hodgkin Lymphomas. The microarray (DualChip human ABC) specificity and the reproducibility of our results were tested first by comparison of ABC gene expression in three drug-resistant sublines and their respective drugsensitive counterparts. The results that we obtained were in accordance with ABC-transporters expression previously described for these cell lines using different methods. Interestingly, we were able to report a larger diversity of ABC-transporter expression than previously established with classical molecular biology screens. To further validate the relevance of this approach for diagnostic purposes, we profiled the expression of ABC genes in clinical samples of Acute Myeloid Leukemia, T-Acute Lymphoblastic Leukemia from pediatric patients, and drug treated/untreated samples of mamma carcinoma biopsies. By doing so, we characterized the expression of new ABC transporters in pediatric leukemia and observed enrichment for ABC-transporters in breast cancers even prior drug treatment. In the second part of this work our microarray-based strategy was applied to diagnostic procedures in order discriminate between four different forms of small B cell non Hodgkin lymphomas. We applied gene expression profiling to RNA samples obtained from 71 patients. Through a supervised comparison of the various expression patterns, we isolated a group of genes that can be used to discriminate 75% of the patients investigated. As a conclusion, using a variety of cell lines and tumor samples we demonstrated that low-density microarrays can be used for molecular diagnosis in many meaningful ways including tumor classification and drug resistance profiling. <br /><br /> La diversité des marqueurs utilisés pour le diagnostic est un nouveau défi dans la pratique médicale quotidienne. Une question se pose donc; comment pouvons-nous déterminer le profil d’expression génique d’une tumeur en utilisant une approche efficace et pratique à des buts cliniques ? Au cours de ces 6 dernières années, les damiers à ADN ont contribué de façon significative à l’amélioration des connaissances dans de nombreux domaines de la recherche biomédicale. Bénéficiant de l’expertise de la société EAT, nous avons développé deux damiers à ADN de faible densité permettant d’une part, l’étude de la résistance à la chimiothérapie induite par les ABC transporteurs, et d’autre part, d’évaluer l’intérêt de ce genre d’outil pour le diagnostique clinique des lymphomes non Hodgkiniens à petites cellules B. Dans un premier temps, nous avons évalué la spécificité et la reproductibilité du damier DualChip human ABC. Pour cela, nous avons comparé le profil d'expression génique de trois lignées cellulaires résistantes à une drogue donnée avec le profil d’expression génique de leur lignée parentale sensible à cette drogue. Les résultats que nous avons obtenus étaient en accord avec ceux préalablement décrits. En outre, nous avons détecté un profil expression d’un plus grand nombre de gènes ABC transporteurs que celui établi précédemment à partir de techniques conventionnelles. Afin d’étudier davantage l’intérêt de cet outil dans le domaine diagnostique, nous avons étudié le profil d’expression des gènes ABC dans des échantillons cliniques de leucémie myéloïde aiguë, leucémie lymphoblastique aiguë de type T chez l’enfant et de carcinomes mammaires provenant de patients adultes traités et non traités. Nous avons ainsi pu mettre en évidence l’expression de nouveaux gènes ABC transporteurs dans les leucémies de l’enfant. Nous avons également observé un niveau d’expression élevé de nombreux gènes ABC transporteurs tant dans les tumeurs mammaires traitées que non traitées. Dans la seconde partie de ce travail, nous avons évalué le potentiel des damiers à ADN de faible densité dans le diagnostic de 4 sous-types de lymphomes non Hodgkiniens à petites cellules B. Nous avons étudié le profil d’expression génique d’échantillons provenant de 71 patients. Une analyse supervisée à partir du profil d’expression de tous les gènes étudiés a ensuite été entreprise. Cette étude a permis de mettre en évidence un groupe de gènes permettant de différencier 75% des patients investigués. L’ensemble de nos résultats a démontré que le damier à ADN de faible densité est un outil prometteur pour le diagnostic moléculaire dans des domaines variés incluant la classification des tumeurs et la détection de la résistance aux drogues.
3

Molecular Characterisation Of The ATP Binding Cassette (ABC) Transporter Type FtsE And FtsX Proteins Of Mycobacterium Tuberculosis

Mir, Mushtaq Ahmad 10 1900 (has links)
Mycobacterium tuberculosis, the principal causative agent of tuberculosis (TB) in humans, is considered to be a successful pathogen owing to the elicitation of multidrug resistance, ability to survive inside macrophage phagosomes by taking nutrients from host cell cytoplasm, and the capacity to alternate between proliferating and dormant (nonproliferating) conditions of growth. Thus, whether one looks at tubercle bacillus from the standpoint of regulation of cell division in the host system, or uptake of nutrients from the host cell cytoplasm or elicitation of drug resistance, the requirement for ATP Binding Cassette (ABC) transporter type protein complexes, which might be involved in the transport of drugs, nutrients or proteins, could be of critical importance to the pathogen. Therefore the present study was initiated to characterize ABC transporter type proteins, FtsE and FtsX of M. tuberculosis (MtFtsE and MtFtsX), and their interaction with FtsZ and FtsQ, which are the septation proteins that are recruited respectively before and after the localization of FtsE and FtsX proteins. The study was carried out in 3 parts. 1. Cloning, overexpression and purification of MtFtsE and MtFtsX proteins and elucidation of ATP binding activity of MtFtsE There exists considerable extent of homology between the FtsE and FtsX proteins of M. tuberculosis and E. coli. Therefore, in order to verify whether the structural homology is reflected in functional homology, complementation of growth defect of E. coli ftsE (Ts) by MtFtsE and MtFtsX was carried out. The MtFtsE protein could partially complement growth defect of E. coli ftsE temperature sensitive strain MFT1181, whereas co-expression of MtFtsE and MtFtsX efficiently complemented growth defect, indicating that the MtFtsE and MtFtsX proteins functionally complement E. coli FtsE and FtsX and that the two proteins together might be performing an associated function. Subsequently, in order to biochemically characterize MtFtsE and MtFtsX proteins of M. tuberculosis, MtftsE gene was cloned in pQE30, overexpressed, purified by Ni2+-NTA agarose affinity chromatography under denaturing conditions and refolded. MtFtsX protein, being toxic to E. coli cells, could not be expressed to sufficient amounts. Western blotting with anti-MtFtsE antibody showed that the recombinant 6xHis-MtFtsE protein and the native MtFtsE protein were localized to the membrane of E. coli and M. tuberculosis cells respectively. 6xHis-MtFtsE protein showed ATP binding in vitro, whereas K42R mutation abolished ATP binding. Thus, like in the case of E. coli FtsE, the K42 residue, which is positionally equivalent to K41 in EcFtsE in Walker A motif, was found to be essential for ATP binding. At 1.3 nM concentration of [α32P] ATP,70 molar excess of ATP, ADP, AMP, and GTP competed out respectively 97%, 87%, 73% and 57% of the [α32P] ATP bound to 6xHis-MtFtsE. 2. Biochemical characterization of MtFtsE protein The functional architecture of an ABC transporter consists of two each of nucleotide binding domain (NBD) and transmembrane domain (TMD), which are either part of a single polypeptide chain or individual subunits. The functional NBD is a ‘nucleotide-sandwich dimer’ with ATP flanked by the Walker A and B motifs of one NBD and the signature motif and D-loop of the other. NBD, through ATPase activity, is involved in energizing the transport of substrates namely drugs, proteins, ions, and solutes across the membrane. Since MtFtsE possesses Walker A and Walker B motifs that constitute NBD, and MtFtsX possesses TMD (four transmembrane segments), the two proteins together might constitute an ABC transporter type complex. Therefore, we wanted to know whether MtFtsE could hydrolyze ATP. MtFtsE not only could bind ATP with high affinity but could hydrolyse it also (Km, 1.5 µM; Vmax, 0.87 nmole/mg/min). It could bind and hydrolyse GTP as well, but not CTP, albeit with lower affinity and rate (Km, 25 µM; Vmax, 0.54 nmole/mg/min). The ATPase activity is strongly dependent on Mg2+ or Mn2+, with a pH optimum of 6.5 – 8.0 and temperature range of 27oC - 40oC. Kinetic analysis of ATPase and GTPase activities indicated nucleotide- dependent cooperativity (Hill coefficient for ATP is 1.7 and for GTP, 2.1). Inhibition of ATPase activity, to almost similar extent, in the presence of 10-fold excess of ATPγS, ADP, AMP, GTP, and CTP, but not TTP, indicated that nucleotide binding is through nitrogenous base of the nucleotide. Inhibition of MtFtsE by orthovanadate classified the enzyme as a P-type ATPase. Partially purified MtFtsE in soluble fraction also showed ATPase activity. The ATPase-active form of MtFtsE is a dimer with the sole cysteine (C84) at the dimer interface. Homology modeling of MtFtsE, using MalK (the NBD component of an ABC transporter for maltose) as the template, supported this observation. Stabilization of the dimer through cys-cys disulphide bond increased ATPase activity by 3.7-fold, although C84 does not have any role in ATPase activity. 3. Identification and elucidation of interaction among cell division proteins FtsE, FtsX, FtsQ and FtsZ of Mycobacterium tuberculosis Septum synthesis in E. coli is mediated by a dozen of proteins, among which the bacterial cytoskeletal protein FtsZ is the first molecule to localise to the mid-cell site, where it forms a scaffold for the localization of downstream cell division proteins namely, FtsA /ZipA < FtsE / FtsX < FtsK < FtsQ < FtsL < FtsB < FtsW < FtsI < FtsN and AmiC. If the above order of recruitment of proteins holds true for M. tuberculosis as well, the immediate proteins recruited to the mid-cell site after MtFtsZ in M. tuberculosis would be MtFtsE and MtFtsX, followed with MtFtsK and MtFtsQ. Thus it is possible that MtFtsE and MtFtsX could be interacting with MtFtsZ and MtFtsQ. Therefore attempts were made to delineate the interaction network among MtFtsE, MtFtsX, MtFtsQ and MtFtsZ of M. tuberculosis. Ni2+-NTA agarose pulldown, co-immunoprecipitation and bacterial two-hybrid assays using wild type and deletion mutants of the proteins showed that MtFtsE interacts with MtFtsQ and MtFtsX through its C-terminus. In addition, MtFtsX could interact with MtFtsZ and MtFtsQ. MtFtsX was found to homodimerise and interact with MtFtsQ in vivo. The ATPase-active of MtFtsE in vivo being a dimer, a hypothetical model for the translocation of MtFtsQ into the membrane at mid-cell site was proposed. According to this model, MtFtsQ might be inserted into the membrane at the mid-cell site by (MtFtsX)2 functioning as the membrane channel for the transport, which could be energized by the ATPase subunit (MtFtsE)2 of the (MtFtsE)2(MtFtsX)2 complex. MtFtsX might have a role in tethering the FtsZ-ring with the membrane at the mid-cell site. An altogether different possibility could be that the (FtsE)2(FtsX)2 complex might have a role in the stabilization or constriction of FtsZ-ring during the inward growth of septum.
4

Designing Genomic Solutions for Abiotic Traits in Flax (Linum usitatissimum L.)

Khan, Nadeem 15 December 2022 (has links)
Flax (Linum usitatissimum L.) is a self-pollinated crop widely cultivated for fiber and oil production. Flaxseed is renowned for its health attributes but the presence of compounds, such as the heavy metal cadmium (Cd), is undesirable. Genomic studies in flax have produced large amounts of data in the last 15 years, providing useful resources to improve the genetic of this crop using genomics-based technologies and strategies. The goal of this thesis is therefore to capitalize on these advances to address the Cd problem and to propose solutions to improve breeding efficiencies. To find genomic-based solutions to Cd content, to the currently low breeding efficiency and to abiotic stress resistance in flax, this study utilized four major strategies: (1) genomic cross prediction, (2) gene family identification, (3) genome-wide association study (GWAS) and (4) genomic selection (GS). Characterization of the ATP-binding cassette (ABC) transporter and heavy metal associated (HMA) gene families was performed using the flax genome sequence. A total of 198 ABC transporter and 12 HMA genes were identified in the flax genome, of which nine were orthologous to Cd-associated genes in Arabidopsis, rice and maize. A transcriptomic analysis of eight tissues provided some support towards the functional annotation of these genes and confirmed the expression of these ABC transporter and HMA genes in flax seeds and other tissues. A diversity panel of 168 flax accessions was grown in the field at multiple locations and years and the seed content of 24 heavy metals (HMs) was measured. The panel was also sequenced and a single nucleotide polymorphism (SNP) dataset of nearly 43,000 SNPs was defined. A GWAS was conducted using these genotypic and phenotypic data and a total of 355 non-redundant quantitative trait nucleotides (QTNs) were identified for ten of the 24 metal contents. Overall, a total of 24 major and 331 minor effect QTNs were detected, including 11 that were pleiotropic. After allelic tests, 108 non-redundant QTNs were retained for eight of the ten metals and ranging from one for copper (Cu) to 70 for strontium (Sr). A total of 20 candidate genes for HM accumulation were identified at 12 of the 24 major QTN loci, of which five belonged to the ABC transporter family. Many of the metal contents, including Cd, appeared to be controlled by many genes of small effects; hence, GS is better suited than marker-assisted selection for application in breeding. To test this, predictive ability using ten GS statistical models was evaluated using trait-specific QTN and the random genome-wide 43K SNP datasets. Significantly higher predictive abilities were observed from the GS models built with the dataset made of QTNs associated with metal contents (70-80%) compared to that of the 43K dataset (10-25%). This study showed the feasibility of using GS to improve the predictive ability of polygenic traits such as metal content in seeds. GS can be applied in early generation selection to accelerate the improvement of abiotic stress resistance and either select low-Cd lines or discard high-Cd lines. These findings validate the use of a QTL-based strategy as a highly effective method for improving the efficiency of predictive ability of GS for highly complex traits such as resistance or tolerance to HM accumulation. Identification of both large and minor effect QTNs and/or pleiotropic effects hold potential for flax breeding improvement. Candidate gene functional validation can be performed using methods such as genome editing or targeting induced local lesions in genomes (TILLING).

Page generated in 0.2456 seconds