• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In vitro selection of aptamers and protein

January 2013 (has links)
abstract: Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this line, my Ph.D. dissertation focuses on the in vitro selection of two important biomolecules, deoxynucleotide acid (DNA) and protein with binding properties. Chapter two focuses on in vitro selection of DNA. Aptamers are single-stranded nucleic acids that generated from a random pool and fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers. By employing negative selection step to eliminate aptamers that bind with off-target through charge unselectively, an aptamer that binds with histone H4 protein with high specificity (>100 fold)was generated. Chapter four focuses on another functional molecule: protein. It is long believed that complex molecules with different function originated from simple progenitor proteins, but very little is known about this process. By employing a previously selected protein that binds and catalyzes ATP, which is the first and only protein that was evolved completely from random pool and has a unique α/β-fold protein scaffold, I fused random library to the C-terminus of this protein and evolved a multi-domain protein with decent properties. Also, in chapter 3, a unique bivalent molecule was generated by conjugating peptides that bind different sites on the protein with nucleic acids. By using the ligand interactions by nucleotide conjugates technique, off-the shelf peptide was transferred into high affinity protein capture reagents that mimic the recognition properties of natural antibodies. The designer synthetic antibody amplifies the binding affinity of the individual peptides by ∼1000-fold to bind Grb2 with a Kd of 2 nM, and functions with high selectivity in conventional pull-down assays from HeLa cell lysates. / Dissertation/Thesis / Ph.D. Biochemistry 2013
2

Molecular regulation of universal stress proteins in environmentally mediated schistosomiasis parasites

Mbah, Andreas Nji 24 April 2014 (has links)
Human schistosomiasis popularly known as bilharzias in many regions of Africa is a freshwater snail-transmitted disease caused by parasitic flatworms known as schistosomes. The growth and development of schistosomes typically requires developmental stages in multiple hosts and transmission stages in freshwater. These life cycle environments present a plethora of stressors. Certain gene families including heat shock proteins (HSPs/Hsps) and universal stress proteins (USPs) help schistosomes to respond to unfavourable conditions. The availability of genomes sequences information for Schistosoma japonicum, Schistosoma mansoni and Schistosoma haematobium provide unique research resources to apply bioinformatics analysis of its associated USPs to predict regulatory features from sequence analysis. The objectives of the research were to (i) Infer the biochemical and environmental regulation of universal stress proteins of Schistosoma species; (ii) Identify biological function relevant protein sequence and structure features for prioritized universal stress proteins from Schistosoma species; (iii) Determine the distinctive structural features of a predicted regulator of Schistosoma adenylate cyclase activity that has possible influence on the functioning of universal stress proteins. The findings revealed that (i) schistosomes USPs are hydrophilic and very reactive in the water environment or in aqueous phase, which seems adaptive with their immediate environment and developmental stages; (ii) The functions of Smp_076400 and Sjp_0058490 (Q86DW2) are regulated by conserved binding site residues and metallic ions ligands (Ca2+, Mg2+ and Zn2+), particularly Ca2+ predicted to bind to both USPs; (iii) The S. mansoni life cycle and stress resistance pathway protein (Smp_059340.1) is regulated by Ser53, Thr188, Gly210 and Asp207 residues. The overall scope has highlighted the role of bioinformatics in predicting exploitable regulatory features of schistosome universal stress proteins and biological pathways that might lead to identification of putative functional biomarkers of common environmental diseases. The findings of this research can be applicable to other areas of environmental health and environmental genomics. / Environmental Sciences / (D. Litt et Phil. (Environmental Sciences)
3

Molecular regulation of universal stress proteins in environmentally mediated schistosomiasis parasites

Mbah, Andreas Nji 24 April 2014 (has links)
Human schistosomiasis popularly known as bilharzias in many regions of Africa is a freshwater snail-transmitted disease caused by parasitic flatworms known as schistosomes. The growth and development of schistosomes typically requires developmental stages in multiple hosts and transmission stages in freshwater. These life cycle environments present a plethora of stressors. Certain gene families including heat shock proteins (HSPs/Hsps) and universal stress proteins (USPs) help schistosomes to respond to unfavourable conditions. The availability of genomes sequences information for Schistosoma japonicum, Schistosoma mansoni and Schistosoma haematobium provide unique research resources to apply bioinformatics analysis of its associated USPs to predict regulatory features from sequence analysis. The objectives of the research were to (i) Infer the biochemical and environmental regulation of universal stress proteins of Schistosoma species; (ii) Identify biological function relevant protein sequence and structure features for prioritized universal stress proteins from Schistosoma species; (iii) Determine the distinctive structural features of a predicted regulator of Schistosoma adenylate cyclase activity that has possible influence on the functioning of universal stress proteins. The findings revealed that (i) schistosomes USPs are hydrophilic and very reactive in the water environment or in aqueous phase, which seems adaptive with their immediate environment and developmental stages; (ii) The functions of Smp_076400 and Sjp_0058490 (Q86DW2) are regulated by conserved binding site residues and metallic ions ligands (Ca2+, Mg2+ and Zn2+), particularly Ca2+ predicted to bind to both USPs; (iii) The S. mansoni life cycle and stress resistance pathway protein (Smp_059340.1) is regulated by Ser53, Thr188, Gly210 and Asp207 residues. The overall scope has highlighted the role of bioinformatics in predicting exploitable regulatory features of schistosome universal stress proteins and biological pathways that might lead to identification of putative functional biomarkers of common environmental diseases. The findings of this research can be applicable to other areas of environmental health and environmental genomics. / Environmental Sciences / (D. Litt et Phil. (Environmental Sciences)

Page generated in 0.0719 seconds