• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Vegetation History from Emerald Pond, Great Abaco Island, The Bahamas, Based on Pollen Analysis

Slayton, Ian Arthur 01 August 2010 (has links)
Emerald Pond (26° 32' 12" N, 77° 06' 32" W) is a vertical-walled solution hole in the pine rocklands of Great Abaco Island, The Bahamas. In 2006, Sally Horn, Ken Orvis, and students recovered an 8.7 m-long sediment core from the center of the pond using a Colinvaux-Vohnout locking piston corer. AMS radiocarbon dates on macrofossils are in stratigraphic order and indicate that the sequence extends to ca. 8400 cal yr BP. Basal deposits consist of aeolian sands topped by a soil and then pond sediment, suggesting that the site began as a sheltered, dry hole during a Late Pleistocene low sea level stand, and became moister as climate changed and rising sea level pushed up the freshwater table. The limestone rockland surrounding the site is presently dominated by Bahamian pine (Pinus caribaea Morelet var. bahamensis (Griseb.) W.H. Barrett & Golfari) with an understory of hardwoods and several palm species. Pollen analyses on the sediments of Emerald Pond indicate significant environmental change at the site. Pines and palms have dominated for much of the record, with some variation in relative importance. Pine pollen shows a non-uniform, general increase over the record, with highest values reached in a section of the upper meter of the record that contains abundant microscopic charcoal that may be related to anthropogenic activities. Palm pollen is well represented in all but this upper section of the core. The shifts in pollen percentages in the upper meter of the core suggest a generally drier environment during the last two millennia at Emerald Pond.

Page generated in 0.0438 seconds