• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing a non-destructive screening tool for pulp yield in Acacia mearnsii (Black wattle) / Developing a non-destructive screening tool for pulp yield in Acacia mearnsii (Black wattle)

Dunlop, Robert William. January 2009 (has links)
Acacia mearnsii (black wattle) is an important South African commercial forestry species, providing a source of high quality raw material (fibre) for both the domestic and international pulp and paper industries. Compared with many Pinus and Eucalyptus species, there has been very little research into the wood and pulping properties of black wattle. The ability to assess pulp yield in a non-destructive manner, using near infrared (NIR) spectroscopy, is vital from a tree improvement perspective. Destructive sampling and analysis, results in the loss of the genotype, while also being very expensive and time consuming. In order to assess some of the important characteristics that make the species desirable from a fibre perspective, this study investigates growth characteristics, wood density and pulp yield of ten trees grown on each of three different sites namely, Bloemendal, Glen Echo and Phoenix, and from each of three different age classes being 7- , 9- and 11-years-old. In total, 90 trees were sampled for this stage of the study. In general, physical characteristics such as utilisable height and diameter at breast height of the trees differed between sites and increased with age, this age effect trend was not reflected in the pulp yield or wood density results. Pulp yield measurements ranged from 52.61 to 59.91% across all sites and age classes, which, when compared to the pulp yield from many other forestry species, is relatively high. Laboratory pulp yield data was used in conjunction with NIR spectra obtained from the same wood samples to calibrate a NIR spectrophotometer to predict pulp yield. Thirty 11- year-old trees were then chosen from the Bloemendal site and sampled extensively to investigate the within-tree variation in pulp yield. The NIR model developed was used to measure the pulp yield from the numerous samples taken from within the trees. In general, pulp yield decreased from pith to bark and from the base of the tree to about 20% of the tree height and then decreased towards the top of the tree. The within-tree variation data for pulp yield was analysed to identify the best position for non-destructive sampling, and a model was then developed to predict whole tree pulp yield based on this sample, which was taken at 1.4 m up the tree. The analyses of small samples of wood meal, using near infrared spectroscopy, enabled the prediction of whole tree pulp yield. / Thesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
2

Shoot apex culture of Acacia mearnsii (De wild)

Thompson, Iain Mungo. January 2007 (has links)
Research into the micropropagation of black wattle in South Africa is important for two reasons. Firstly micropropagation technology allows breeders to select and propagate mature tissue, which in turn allows them to better capture selected traits. Secondly, tissue culture may control the highly invasive nature of black wattle. If triploid black wattle can be developed, foresters will then have to rely on clonal propagation to supply material for their growing operations. This research was part of the Institute for Commercial Forestry’s Acacia mearnsii vegetative propagation programme. The main focus of this research was to overcome various problems associated with direct organogenesis of ex vitro material. The shoot apex region was used as the explant in all studies because this region is thought to harbour relatively few internal microbial contaminants and is of sufficient size to withstand stresses associated with micropropagation. The initial research was focussed on the screening of sterilants, searching for a viable alternative to mercuric chloride. Surface sterilisation is integral to any micropropagation technique. This process should do the least amount of plant damage, whilst reducing microbial contamination to an acceptable level. Explants were cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg L-1 BA and monitored for signs of contamination and shooting. Household bleach proved an excellent alternative to mercuric chloride because it did significantly less damage to the explants than mercuric chloride and is handled easily. There was no significant effect of sterilant exposure time on explant decontamination levels, whilst the shortest exposure time resulted in significantly higher levels of shoot development than the other two times tested. The results of this initial research was developed into a protocol and utilised in subsequent investigations. Due to a considerable variation in the success of the developed surface sterilisation protocol according to different times of the year, a further investigation into the effects of season and mother plant material on shoot apex culture of Acacia mearnsii was undertaken. The success of any tissue culture technique depends on a large array of ex vitro and in vitro variables. The objective of this research was to determine the ii effect of two ex vitro variables, season and mother plant, on shoot apex culture of Acacia mearnsii. Explants from individual mother plants were cultured on MS medium supplemented with 2.0 mg L-1 BA during four separate seasons and monitored for signs of contamination and shooting. Spring was found to be the best harvesting season because spring explants showed significantly higher decontaminated explant levels and shooting levels than explants harvested in the other three seasons. The effect of mother plant selection on the performance of Acacia mearnsii explants during shoot apex culture was also found to be significant, especially with regard to shooting levels. Finally factors influencing shoot elongation of A. mearnsii during shoot apex culture were investigated. In the past, induction of shoot elongation during micropropagation of A. mearnsii was attained through the addition of plant growth regulators and other supplements to the basal culture medium. However, some micropropagation methods in other species have utilised red light as a means of promoting shoot elongation. The objective of this study was to test the effects of an alternative basal medium, red light and differing concentrations of chemical additions to the culture medium on shoot elongation of Acacia mearnsii during shoot apex culture. Four independent experiments were undertaken comparing: shoot elongation on Woody Plant Medium (WPM) to the MS basal medium control; shoot elongation under a red cellophane box compared to control culture light conditions; shoot elongation on media supplemented with various concentrations of GA3 to the un-supplemented control and shoot elongation on media supplemented with combinations of BA and IBA compared to a control. Although no significant effects were observed, many trends were noted. The results indicated that there was no advantage to using WPM instead of MS medium when attempting to elongate shoots, rejuvenated through shoot apex culture of A. mearnsii, whilst the effect of GA3 showed a negative trend. The effects of red light and some BA and IBA combinations showed positive trends on the elongation of initiated shoots. This research successfully addressed some of the problems associated with micropropagation of A. mearnsii. Shoot apex culture shows promise and further research into this technique should be considered. A viable surface sterilant alternative to mercuric chloride was successfully identified. This alternative is not only iii safer to use but shows a large reduction in phytotoxic effects. The effects of season and mother plant on shoot apex culture was successfully investigated, resulting in a better understanding of mother plant influences on tissue culture as well as the identification of an optimum season for explant selection. Finally two possible shoot elongation promoters were identified for further research and a more affordable alternative to red light sources and screens was identified. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.

Page generated in 0.0336 seconds