• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etudes structurales de la protéine ACAD9 et des facteurs d'assemblage du complexe 1 de la chaîne respiratoire mitochondriale pour établir leur implication dans les processus neurodégénératifs / Structural studies of ACAD9 and mitochondrial complex 1 assembly factors to investigate their role in neurodegeneration

Bouverot, Romain 27 February 2019 (has links)
Les mitochondries sont en charge de la bioénergétique cellulaire, tout particulièrement dans le cerveau humain, au sein duquel les neurones sont extrêmement demandeurs en énergie et hautement dépendant de la phosphorylation oxydative. En effet, celles-ci génèrent un potentiel énergétique grâce à une chaîne de transport d’électrons, ou chaîne respiratoire, composée de quatre complexes protéiques ancrés dans la membrane interne mitochondriale. La chaine respiratoire permet la production d’énergie via la phosphorylation oxydative d’ADP en ATP par l’ATP synthéase dans la matrice mitochondriale. Le premier complexe (CI) de la chaîne est composé de 45 sous-unités protéiques (dont 44 différentes). En tant que premier enzyme de la phosphorylation oxydative, il joue un rôle d’initiateur et est essentiel pour la production d'énergie cellulaire. Un défaut d’assemblage du CI se traduit par d’importantes conséquences sur la bioénergétique cellulaire et augmente la production d’espèces réactives de l’oxygène (ROS), pouvant être à l'origine de divers troubles mitochondriaux, parmi lesquels certains processus neurodégénératifs. La bonne intégration des sous-unités et cofacteurs composant le CI est par conséquent primordiales et requièrent la participation de facteurs d’assemblage jouant le rôle de chaperonnes afin de stabiliser les sous-unités et faciliter leur intégration au sein de l'enzyme complète. De plus, certaines fonctions additionnelles à leur rôle d’assemblage peuvent intervenir dans d’autres processus cellulaire régulant l’activité métabolique.Le fonctionnement des facteurs d'assemblage du CI au niveau moléculaire demeure encore obscur. Néanmoins, il est admis que la plupart des facteurs d'assemblages identifiés sont actifs dès le début de l'assemblage, particulièrement pour l'incorporation des sous-unités membranaires. Récemment un groupe de facteurs d’assemblage composés des protéines NDUFAF1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 1), ACAD9 (Acyl-CoA dehydrogenase 9), ECSIT (Evolutionarily conserved signaling intermediate in Toll pathway), et potentiellement TMEM126B (Transmembrane protein 126B) and TIMMDC1 (Translocase of inner mitochondrial membrane domain-containing 1) est désigné sous l'appellation complexe d’assemblage du complexe mitochondrial I (MCIA). Cependant, la composition et la stœchiométrie de ce dernier restent inconnus, excluant ainsi toute compréhension satisfaisante de sa structure et de son importance dans les mécanismes à l'oeuvre dans l’assemblage du CI.Cette thèse a pour but les caractérisations des facteurs d’assemblage ACAD9, ECSIT and NDUFAF1 grâce à un ensemble d’approches biochimiques et biophysiques dans le but de déterminer les mécanismes moléculaires et la cartographie des interactions impliqués dans l’assemblage du complexe MCIA. / Mitochondria are responsible for bioenergetics, particularly critical in the human brain, where neurons are extremely energy demanding and highly dependent on the oxidative phosphorylation (OXPHOS) system. They generate energetic potential through the electron transport chain (ETC), also named the respiratory chain, which is composed of four protein complexes embedded into the mitochondrial inner membrane (MIM) to enable the phosphorylation of ADP into ATP by the ATP synthase in the mitochondrial matrix. Together these complexes form the OXPHOS system. Complex I (CI), the first enzyme of the respiratory chain, is composed of 45 protein subunits (of which 44 are different) and initiates the OXPHOS system, being essential in cellular energy production. Defects in CI assembly severally impair ATP production, increase the production of reactive oxygen species (ROS) and are implicated in several mitochondrial disorders, including neurodegenerative diseases. The integration of the 45 subunits and the insertion of cofactors into the nascent complex requires the help of assembly factors. Assembly factors may act as chaperones that stabilize the intermediate complexes or subunits and help to attach them to other intermediate assemblies to build the complete enzyme. However, they may also have additional functions besides their requirement for CI assembly, in line with the emerging evidence that mitochondria are involved with various (sub)cellular processes that regulate cell metabolic activity.How CI assembly factors function at the molecular level is currently unclear, with very little structural information available. Nevertheless, it is thought that most identified assembly factors are involved in early assembly, more specifically in the incorporation of hydrophobic membrane subunits. Recently, the CI assembly factors NDUFAF1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 1), ACAD9 (Acyl-CoA dehydrogenase 9), ECSIT (Evolutionarily conserved signaling intermediate in Toll pathway), and potentially TMEM126B (Transmembrane protein 126B) and TIMMDC1 (Translocase of inner mitochondrial membrane domain-containing 1) were proposed to form the so-called mitochondrial complex I assembly (MCIA) complex. However, the composition and stoichiometry of the MCIA complex are unknown, which precludes a proper understanding of the structural and mechanistic bases for building-up assembly intermediates and how the MCIA complex achieves specificity.This thesis pursues the characterisation of the MCIA core components ACAD9, ECSIT and NDUFAF1, mapping their interactions and characterising their structures using a combination of biophysical and biochemical approaches in order to elucidate the molecular mechanisms underlying the MCIA complex formation.

Page generated in 0.0557 seconds