Spelling suggestions: "subject:"access control ddministration"" "subject:"access control coadministration""
1 |
Towards a worldwide storage infrastructureQuintard, Julien January 2012 (has links)
Peer-to-peer systems have recently gained a lot of attention in the academic community especially through the design of KBR (Key-Based Routing) algorithms and DHT (Distributed Hash Table)s. On top of these constructs were built promising applications such as video streaming applications but also storage infrastructures benefiting from the availability and resilience of such scalable network protocols. Unfortunately, rare are the storage systems designed to be scalable and fault-tolerant to Byzantine behaviour, conditions required for such systems to be deployed in an environment such as the Internet. Furthermore, although some means of access control are often provided, such file systems fail to offer the end-users the flexibility required in order to easily manage the permissions granted to potentially hundreds or thousands of end-users. In addition, as for centralised file systems which rely on a special user, referred to as root on Unices, distributed file systems equally require some tasks to operate at the system level. The decentralised nature of these systems renders impossible the use of a single authoritative entity for performing such tasks since implicitly granting her superprivileges, unacceptable configuration for such decentralised systems. This thesis addresses both issues by providing the file system objects a completely decentralised access control and administration scheme enabling users to express access control rules in a flexible way but also to request administrative tasks without the need for a superuser. A prototype has been developed and evaluated, proving feasible the deployment of such a decentralised file system in large-scale and untrustworthy environments.
|
2 |
Access Control Administration with Adjustable DecentralizationChinaei, Amir Hossein 22 August 2007 (has links)
Access control is a key function of enterprises that preserve and propagate massive data. Access control enforcement and administration are two major components of the system. On one hand, enterprises are responsible for data security; thus, consistent and reliable access control enforcement is necessary although the data may be distributed. On the other hand, data often belongs to several organizational units with various access control policies and many users; therefore, decentralized administration is needed to accommodate diverse access control needs and to avoid the central bottleneck. Yet, the required degree of decentralization varies within different organizations: some organizations may require a powerful administrator in the system; whereas, some others may prefer a self-governing setting in which no central administrator exists, but users fully manage their own data. Hence, a single system with adjustable decentralization will be useful for supporting various (de)centralized models within the spectrum of access control administration.
Giving individual users the ability to delegate or grant privileges is a means of decentralizing access control administration. Revocation of arbitrary privileges is a means of retaining control over data. To provide flexible administration, the ability to delegate a specific privilege and the ability to revoke it should be held independently of each other and independently of the privilege itself. Moreover, supporting arbitrary user and data hierarchies, fine-grained access control, and protection of both data (end objects) and metadata (access control data) with a single uniform model will provide the most widely deployable access control system.
Conflict resolution is a major aspect of access control administration in systems. Resolving access conflicts when deriving effective privileges from explicit ones is a challenging problem in the presence of both positive and negative privileges, sophisticated data hierarchies, and diversity of conflict resolution strategies.
This thesis presents a uniform access control administration model with adjustable decentralization, to protect both data and metadata. There are several contributions in this work. First, we present a novel mechanism to constrain access control administration for each object type at object creation time, as a means of adjusting the degree of decentralization for the object when the system is configured. Second, by controlling the access control metadata with the same mechanism that controls the users’ data, privileges can be granted and revoked to the extent that these actions conform to the corporation’s access control policy. Thus, this model supports a whole spectrum of access control administration, in which each model is characterized as a network of access control states, similar to a finite state automaton. The model depends on a hierarchy of access banks of authorizations which is supported by a formal semantics. Within this framework, we also introduce the self-governance property in the context of access control, and show how the model facilitates it. In particular, using this model, we introduce a conflict-free and decentralized access control administration model in which all users are able to retain complete control over their own data while they are also able to delegate any subset of their privileges to other users or user groups. We also introduce two measures to compare any two access control models in terms of the degrees of decentralization and interpretation. Finally, as the conflict resolution component of access control models, we incorporate a unified algorithm to resolve access conflicts by simultaneously supporting several combined strategies.
|
3 |
Access Control Administration with Adjustable DecentralizationChinaei, Amir Hossein 22 August 2007 (has links)
Access control is a key function of enterprises that preserve and propagate massive data. Access control enforcement and administration are two major components of the system. On one hand, enterprises are responsible for data security; thus, consistent and reliable access control enforcement is necessary although the data may be distributed. On the other hand, data often belongs to several organizational units with various access control policies and many users; therefore, decentralized administration is needed to accommodate diverse access control needs and to avoid the central bottleneck. Yet, the required degree of decentralization varies within different organizations: some organizations may require a powerful administrator in the system; whereas, some others may prefer a self-governing setting in which no central administrator exists, but users fully manage their own data. Hence, a single system with adjustable decentralization will be useful for supporting various (de)centralized models within the spectrum of access control administration.
Giving individual users the ability to delegate or grant privileges is a means of decentralizing access control administration. Revocation of arbitrary privileges is a means of retaining control over data. To provide flexible administration, the ability to delegate a specific privilege and the ability to revoke it should be held independently of each other and independently of the privilege itself. Moreover, supporting arbitrary user and data hierarchies, fine-grained access control, and protection of both data (end objects) and metadata (access control data) with a single uniform model will provide the most widely deployable access control system.
Conflict resolution is a major aspect of access control administration in systems. Resolving access conflicts when deriving effective privileges from explicit ones is a challenging problem in the presence of both positive and negative privileges, sophisticated data hierarchies, and diversity of conflict resolution strategies.
This thesis presents a uniform access control administration model with adjustable decentralization, to protect both data and metadata. There are several contributions in this work. First, we present a novel mechanism to constrain access control administration for each object type at object creation time, as a means of adjusting the degree of decentralization for the object when the system is configured. Second, by controlling the access control metadata with the same mechanism that controls the users’ data, privileges can be granted and revoked to the extent that these actions conform to the corporation’s access control policy. Thus, this model supports a whole spectrum of access control administration, in which each model is characterized as a network of access control states, similar to a finite state automaton. The model depends on a hierarchy of access banks of authorizations which is supported by a formal semantics. Within this framework, we also introduce the self-governance property in the context of access control, and show how the model facilitates it. In particular, using this model, we introduce a conflict-free and decentralized access control administration model in which all users are able to retain complete control over their own data while they are also able to delegate any subset of their privileges to other users or user groups. We also introduce two measures to compare any two access control models in terms of the degrees of decentralization and interpretation. Finally, as the conflict resolution component of access control models, we incorporate a unified algorithm to resolve access conflicts by simultaneously supporting several combined strategies.
|
Page generated in 0.1087 seconds