Spelling suggestions: "subject:"accumulative role bonding"" "subject:"accumulatives role bonding""
11 |
Feinlagige und feinkristalline Titan/Aluminium-VerbundblecheRomberg, Jan 24 November 2014 (has links)
Ein Verbundwerkstoff aus Titan und Aluminium kann mittels akkumulativem Walzplattieren hergestellt werden. Dabei wird die Dehngrenze angehoben, wenn die Titanlagen nicht abschnüren, sondern laminar bleiben. Die Herstellung eines laminaren Ti/Al-Verbundwerkstoffes ist neu gegenüber den bisherigen Studien. Diese Dissertation beschreibt die Hindernisse und Lösungen, die aus metallphysikalischer Überlegung entstanden und praktisch umgesetzt worden sind. Bei der starken Umformung je ARB-Zyklus neigt das Titan bereits beim zweiten Walzen zur Bildung von Einschnürungen. Das kann durch eine Verringerung der Dickenreduktion je Zyklus sowie durch eine Erhöhung der Verfestigungsrate unterdrückt oder verzögert werden.
Walzen mit unterschiedlich großen Ober- und Unterwalzen führt im Vergleich zum symmetrischen Walzen bei gleicher Dickenreduktion zu verstärktem Einschnüren der Titanlagen. Da der Prozess jedoch eine Verringerung der Dickenreduktion erlaubt, ermöglicht er die Zahl der Einschnürungen bei gegenüber dem Quartowalzen gleicher Geschwindigkeit zu verringern. Die spezifische Festigkeit erreicht hierbei einen Wert von auf dem Niveau hochfester Stähle.:1. Einleitung - hochfeste, verformbare und leichte Halbzeuge für
ressourcenschonende Mobilität 2
2. Zielstellung - hochfeste Leichtmetall-Verbundbleche mit
feinlamellaren Strukturen und geringer Korngröße 4
3. Grundlagen 7
3.1. Härtungsmechanismen 7
3.2. Ultrafeinkörnige Werkstoffe und Werkstoffkonzepte für den
Leichtbau 10
3.3. Akkumulatives Walzplattieren 15
3.4. Titan/Aluminium-Verbundmaterialien durch ARB 18
3.5. Prinzip und Anwendung von Differential speed rolling 21
4. Methoden 24
4.1. Walzen und Akkumulatives Walzplattieren 24
4.2. DSR - Scherwalzen 27
4.3. Metallographische Probenpräparation 29
4.4. Elektronenmikroskopie, EBSD und Korngrößenbestimmung 32
4.5. Zugversuche 34
4.6. Härtemessungen 36
5. Akkumulatives Walzplattieren 38
5.1. Einfluss von Walzenparametern 38
5.1.1.Walzgut- und Walzenvorheizung 38
5.1.2. Zwischenglühung 45
5.1.3. Walzgeschwindigkeit 60
5.1.4. Mechanische Spannung durch Haspelzug 64
5.1.5. Vergleich von Triowalzen und Quartowalzen 70
5.2. Parametersatz und Vergleich des Verbundes mit EinzelmaterialBlechen 77
5.3. Nachwalzen 80
6. DSR / Walzen mit verschiedenen Geschwindigkeiten der
Arbeitswalzen 84
6.1. Ermittlung der Scherung beim Walzen mit verschiedenen
Geschwindigkeiten der Arbeitswalzen in Abhängigkeit der vorherigen
ARB-Zyklen 84
6.2. Entwicklung des Gefüges in homogenen Metallen und
Verbundmetallen 88
7. Abschließende Diskussion und Ausblick 100
8. Zusammenfassung 106
9. Literatur 108
|
12 |
Étude du multi-colaminage de matériaux différents / Study of Accumulative Roll-Bonding of dissimilar materialsVerstraete, Kévin 28 March 2017 (has links)
Le multi-colaminage est connu pour pouvoir créer des composites ayant une résistance mécanique améliorée et coupler les bonnes propriétés des deux métaux utilisés. L’étude s’est focalisée sur l’élaboration à froid et à chaud de deux composites fonctionnels à base d’aluminium : Al6061/ Al5754 et Al6061/Acier IF. Sur le premier composite, une comparaison a été faite entre le procédé classique et le multi-colaminage croisé, où la direction de laminage est tournée de 90° entre chaque passe. Ce dernier s’est avéré plus apte à hyperdéformer et donc à améliorer la résistance mécanique à température ambiante alors qu’une élaboration à chaud limite cette augmentation par rapport au procédé classique. Au niveau de l’architecture des composites, une réalisation à l’ambiante strictionne puis fractionne la phase dure occasionnant une chute de la résistance mécanique pour le second composite, tandis qu’une réalisation en température conserve la stratification et permet la disparition des interfaces pour le premier composite et l’apparition d’intermétalliques pour le second. Enfin, le composite Al6061/Al5754 s’est montré apte à résister à la fissuration à chaud tandis que le composite Al6061/Acier IF est capable de blinder magnétiquement. / The Accumulative Roll Bonding (ARB), consisting in a repetition of roll bonding, is known as a suitable process to work out composite with tailored properties and higher mechanical strength. The present study aimed to develop two functional composites at room and hot temperatures: AA6061/AA5754 and AA6061/IF steel. The first one was developed with both ARB and Cross-ARB (CARB). The Cross-ARB changes the rolling direction by 90° between each pass. As a result, the second process showed higher strength at room temperature. A hotter temperature of process prevented a further enhancement of the strength. According to the temperature of the process, different architectures were obtained. Indeed, ARB at room temperature led to the necking then to the fragmentation of the hard phase and, as a consequence to the collapse of the strength of the composite AA6061/IF steel. The temperature preserved the stratification in the AA6061/AA5754 composite but favored the appearance of intermetallic phase in the AA6061/ IF steel composite. Eventually, the first composite was able to resist to the hot cracking while the second showed magnetic shielding effectiveness.
|
Page generated in 0.1056 seconds