• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 33
  • 31
  • 14
  • 8
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 106
  • 45
  • 44
  • 44
  • 43
  • 40
  • 37
  • 32
  • 29
  • 29
  • 29
  • 27
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Formation and reactions of methylol cellulose

Baker, Timothy J., January 1979 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1979. / Includes bibliographical references (p. 78-82).
22

Histone acetylation in gynaecological malignancies

Man, Pui-sum, Ellen., 萬佩心. January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
23

Functional consequences of the direct physical interaction between E2A transcription factors and CBP/p300

Hyndman, Brandy Dawn 01 October 2007 (has links)
The E2A locus is involved in chromosomal translocations associated with acute lymphoblastic leukemia. The most common of these involves a translocation between chromosomes 1 and 19 (t1;19), resulting in expression of the chimeric oncoprotein E2A-PBX1. A direct interaction between transcriptional activation domain 1 (AD1) of E2A and KIX domain of the histone acetyltransferase (HAT) /co-activator CBP is required for E2A-PBX1-mediated leukemia induction in mice. This thesis examines the functional consequences of the direct, physical interaction between E2A and CBP, for both proteins. We demonstrate that the interaction between E2A and CBP/p300, as well as another HAT/co-activator, p/CAF, results in acetylation of E2A. Mutagenesis-based mapping studies identify several lysine residues as substrates for acetylation. Of particular interest, a conserved lysine (K34) located within AD1 is acetylated in vitro and in vivo. Substitution of this residue to arginine impairs transcriptional activation of a luciferase reporter while substitution to glutamine, mimicking the acetylation, restores E2A-mediated transcriptional activation. Recent studies have shown that several transcription factors can modulate the intrinsic HAT activity of CBP/p300. We were surprised to find that E2A proteins enhance acetylation of histones by CBP, in vitro and in vivo, in a KIX domain-independent manner. Acetylation of E2A is also not required for stimulation of CBP/p300 histone acetylation. It appears that E2A interacts with the other CBP domains to mediate this effect, presumably through allosteric effects. In summary, we demonstrate that acetylation of E2A plays a role in mediating the transcriptional activation activity of E2A. Furthermore, acetylation of E2A enhances its interaction with CBP/p300, at least in the presence of additional nuclear factors. We show evidence that p/CAF may mediate this effect. Enhancement of CBP/p300 HAT activity by oncogenic E2A-PBX1 proteins in vivo, suggests that some of its leukemia-promoting effects may be due to E2A-induced gain of function effects on CBP/p300. The enhanced interaction between acetylated E2A and CBP/p300, as well as the E2A-mediated stimulation of histone acetyltransferase activity might play a role in the DNA-binding-independent induction of proliferation. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2007-09-26 13:37:21.905
24

The Role of Fungal Stress Responses in Regulation of Azole Resistance

Robbins, Nicole 09 August 2013 (has links)
Fungal pathogens are a leading cause of human mortality, at least in part due to their ability to thwart therapeutic regimens by rapidly evolving resistance to antifungal drugs, and as a consequence of the increasing frequency of immunocompromised individuals most vulnerable to fungal infection. Candida albicans, the leading human fungal pathogen, has evolved an elegant repertoire of mechanisms to survive the cellular stress exerted by the azoles, which are the most widely deployed class of antifungals and inhibit ergosterol biosynthesis, inducing cell membrane stress. The evolution and maintenance of diverse resistance phenotypes is contingent upon cellular stress response circuitry, including that regulated by the molecular chaperone Hsp90 and its client protein calcineurin. My doctoral research focuses on three aspects of the role of fungal stress responses in regulation of azole resistance. First, I establish a novel role for nutrients and nutrient signalling in azole resistance of C. albicans and the model yeast Saccharomyces cerevisiae. Compromising a global regulator that couples growth to environmental cues, Tor kinase, provides a powerful strategy to abrogate fungal drug resistance with broad therapeutic potential. Second, I implicate the molecular chaperone Hsp90 as a key regulator of biofilm drug resistance in C. albicans. Compromising Hsp90 function transforms the azoles from ineffective to highly efficacious at eradicating biofilms in vitro and in vivo. Depletion of Hsp90 leads to reduction of client proteins’ calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Third, I establish that inhibition of lysine deacetylases (KDACs) blocks the emergence and maintenance of Hsp90-dependent azole resistance in C. albicans and S. cerevisiae. S. cerevisiae Hsp90 is acetylated on lysine 27 and 270, and key KDACs for drug resistance are Hda1 and Rpd3. Compromising KDACs alters stability and function of Hsp90 client proteins, including drug resistance regulator calcineurin. Overall, this work provides novel insight into the mechanisms by which cellular stress responses mediate azole resistance, and establishes acetylation as a novel mechanism of post-translational control of Hsp90 function in fungi; ultimately, this unveils numerous targets that could be exploited for therapeutic benefit in the treatment of fungal disease.
25

The Role of Fungal Stress Responses in Regulation of Azole Resistance

Robbins, Nicole 09 August 2013 (has links)
Fungal pathogens are a leading cause of human mortality, at least in part due to their ability to thwart therapeutic regimens by rapidly evolving resistance to antifungal drugs, and as a consequence of the increasing frequency of immunocompromised individuals most vulnerable to fungal infection. Candida albicans, the leading human fungal pathogen, has evolved an elegant repertoire of mechanisms to survive the cellular stress exerted by the azoles, which are the most widely deployed class of antifungals and inhibit ergosterol biosynthesis, inducing cell membrane stress. The evolution and maintenance of diverse resistance phenotypes is contingent upon cellular stress response circuitry, including that regulated by the molecular chaperone Hsp90 and its client protein calcineurin. My doctoral research focuses on three aspects of the role of fungal stress responses in regulation of azole resistance. First, I establish a novel role for nutrients and nutrient signalling in azole resistance of C. albicans and the model yeast Saccharomyces cerevisiae. Compromising a global regulator that couples growth to environmental cues, Tor kinase, provides a powerful strategy to abrogate fungal drug resistance with broad therapeutic potential. Second, I implicate the molecular chaperone Hsp90 as a key regulator of biofilm drug resistance in C. albicans. Compromising Hsp90 function transforms the azoles from ineffective to highly efficacious at eradicating biofilms in vitro and in vivo. Depletion of Hsp90 leads to reduction of client proteins’ calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Third, I establish that inhibition of lysine deacetylases (KDACs) blocks the emergence and maintenance of Hsp90-dependent azole resistance in C. albicans and S. cerevisiae. S. cerevisiae Hsp90 is acetylated on lysine 27 and 270, and key KDACs for drug resistance are Hda1 and Rpd3. Compromising KDACs alters stability and function of Hsp90 client proteins, including drug resistance regulator calcineurin. Overall, this work provides novel insight into the mechanisms by which cellular stress responses mediate azole resistance, and establishes acetylation as a novel mechanism of post-translational control of Hsp90 function in fungi; ultimately, this unveils numerous targets that could be exploited for therapeutic benefit in the treatment of fungal disease.
26

A Systems Level Characterization of the Saccharomyces Cerevisiae NuA4 Lysine Acetyltransferase

Mitchell, Leslie 10 March 2011 (has links)
Lysine acetylation is a post-translational modification (PTM) studied extensively in the context of histone proteins as a regulator of chromatin dynamics. Recent proteomic studies have revealed that as much as 10% of prokaryotic and mammalian proteins undergo lysine acetylation, and as such, the study of its biological consequences is rapidly expanding to include virtually all cellular processes. Unravelling the complex regulatory network governed by lysine acetylation will require an in depth knowledge of the lysine acetyltransferase enzymes that mediate catalysis, and moreover the development of methods that can identify enzyme-substrate relationships in vivo. This is complex task and will be aided significantly through the use of model organisms and systems biology approaches. The work presented in this thesis explores the function of the highly conserved NuA4 lysine acetyltransferase enzyme complex in the model organism Saccharomyces cerevisiae using systems biology approaches. By exploiting genetic screening tools available to the budding yeast model, I have systematically assessed the cellular roles of NuA4, thereby identifying novel cellular processes impacted by the function of the complex, such as vesicle-mediated transport and the stress response, and moreover identified specific pathways and proteins that are impacted by NuA4 KAT activity, including cytokinesis through the regulation of septin protein dynamics. Moreover, I have developed a mass spectrometry-based technique to identify NuA4-dependent acetylation sites amongst proteins that physically interact with NuA4 in vivo. Together this work demonstrates the diversity of processes impacted by NuA4 function in vivo and moreover highlights the utility of global screening techniques to characterize KAT function.
27

The interaction of the adenovirus E1B-55K protein with a histone deacetylase complex : its importance in regulation of P53 protein functions /

Punga, Tanel, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 3 uppsatser.
28

Structural and functional characterization of histone acetyltransferase-1

Mersfelder, Erica Lee Paul, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 104-115).
29

The effects of histone acetylation on the maize allele PL1-blotched

Ladipo, Paul B. January 2007 (has links)
Thesis (M.A.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 29, 2008) Includes bibliographical references.
30

Studies of Nε-Lysine Acetylation Modification on Escherichia coli Topoisomerase I

Zhou, Qingxuan 28 June 2017 (has links)
Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The sirtuin protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modifications. Here, we explored the effect of lysine acetylation on E. coli topoisomerase I through analysis of TopA relaxation activity and protein expression in cell extract of wild-type and a ΔcobB mutant strains. We showed that the absence of deacetylase CobB in a ΔcobB mutant reduced intracellular TopA relaxation activity while elevating TopA expression and topA gene transcripts levels. Acetyl phosphate mediated lysine acetylation decreased the activity of purified TopA in vitro, and the interaction with purified CobB protected TopA from such inactivation. We explored the physiological significance of TopA acetylation on DNA supercoiling by two-dimensional gel analysis and on cell growth rate by growth curve analysis. We found that the absence of CobB increased negative DNA supercoiling. The slow growth phenotype of the ∆cobB mutant can be partially compensated by overexpression of recombinant TopA. In addition, the specific activity of TopA expressed from His-tagged fusion construct in the chromosome was inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. Investigation of TopA relaxation mechanism using nuclease footprinting and TopA oxidative crosslinking suggested the potential association of TopA acetylation in catalysis. Mass spectrometry analysis of in vitro acetyl phosphate acetylated TopA identified abundant lysine acetylation sites. Substitution of lysine residues by site-directed mutagenesis was used to model the effect of acetylation on individual lysine residues. Our results showed that substitution of Lys-484 with alanine reduced the relaxation activity, suggesting the reduction of TopA relaxation activity by acetylation was probably in part due to acetylation on Lys-484. These findings demonstrate that E. coli topoisomerase I is modulated by lysine acetylation and the prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the sirtuin deacetylase CobB.

Page generated in 0.0988 seconds