• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CNGB3 mutations cause severe rod dysfunction

Maguire, John, McKibbin, M., Khan, K., Ali, M., Kohl, S., McKeefry, Declan J. 20 September 2017 (has links)
Yes / Congenital achromatopsia or rod monochromatism is a rare autosomal recessive condition defined by a severe loss of cone photoreceptor function in which rods purportedly retain normal or near-to-normal function. This report describes the results of electroretinography in two siblings with CNGB3-associated achromatopsia. Full field light- and dark-adapted electroretinograms (ERGs) were recorded using standard protocols detailed by the International Society for Clinical Electrophysiology of Vision (ISCEV). We also examined rod-mediated ERGs using series of stimuli that varied over a 6 log unit range of retinal illuminances (−1.9–3.5 log scotopic trolands). Dark-adapted ERGs in achromatopsia patients exhibited severely reduced b-wave amplitudes with abnormal b:a ratios (1.3 and 0.6). In comparison, the reduction in a-wave amplitude was less marked. The rod-mediated ERG took on an electronegative appearance at high-stimulus illuminances. Although the defect that causes achromatopsia is primarily in the cone photoreceptors, our results reveal an accompanying disruption of rod function that is more severe than has previously been reported. The differential effects on the b-wave relative to the a-wave points to an inner-retinal locus for the disruption of rod function in these patients.

Page generated in 0.0704 seconds