• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study of Filter Cake Cleanup by Acid/Water Jetting

Zhang, Yanbin 16 January 2010 (has links)
The main purpose of acid/water jetting treatments currently applied in the field is to clean up the filter cake formed during the drilling process and perhaps further stimulate the wellbore by creating wormholes if acid jetting is used in carbonate formation. This purpose can be achieved for the reason that the filter cake on the borehole can be mechanically broken by the high speed jetting action, and additionally, if acid is used, some materials in the filter cake can be dissolved, which can facilitate the mechanical breaking action. The knowledge of jetting effectiveness under various conditions is crucial for the purpose of optimizing the treatment design. In order to investigate quantitatively the effectiveness of acid/water jetting for filter cake cleanup and wellbore productivity enhancement, laboratory experiments were carried out under conditions similar to those in the field. Filter cake was deposited on the face of a 4 inch diameter core and then water or 15% HCl were used for jetting treatment. The original permeability, the permeability right after the drill-in fluid damage, and the permeability after the jetting treatment were measured and compared. The effect of overbalance pressure during the jetting treatment was investigated. CT scan was carried out for those cores that may have wormholes after the acid jetting treatment. An analysis of the mechanism for filter cake removal and wormhole creating during acid jetting treatment was proposed. It is discovered that acid jetting can effectively remove the filter cake by penetrating and lifting it from beneath, and efficient wormhole creation can only happen when the overbalance pressure during the acid jetting treatment is above a certain value. Based on this study, several suggestions for field applications were made.
2

Acid Placement in Acid Jetting Treatments in Long Horizontal Wells

Sasongko, Hari 2012 May 1900 (has links)
In the Middle East, extended reach horizontal wells (on the order of 25,000 feet of horizontal displacement) are commonly acid stimulated by jetting acid out of drill pipe. The acid is jetted onto the face of the openhole wellbore as the drill pipe is withdrawn from the well. The jetting action helps to remove the drilling fluid filter cake and promote the acid to penetrate into the formation and form wormholes to stimulate the well. However, with very long sections of wellbore open to flow, the acid placement and subsequent wormhole distribution and penetration depths are uncertain. This study has modeled the acid jetting process using a comprehensive model of acid placement and wormhole propagation in a horizontal well. It is presumed that the acid jetting tool removes the drilling mud filter cake, so that no filter cake exists between the end of the drill pipe and the toe of the well. Correspondingly, the model also assumes that there is an intact, low-permeability filter cake on the borehole wall between the end of the drill pipe and the heel of the well. The drill pipe is modeled as being withdrawn from the well during the acid jetting treatment, as is done in practice. The acidizing simulator predicts the distribution of acid and the depths of wormholes formed as functions of time and position during the acid jetting treatment. The model shows that the acid jetting process as typically applied in these wells preferentially stimulates the toe region of the horizontal well. Comparisons of the simulation predictions with published data for acid jetting treatments in such wells showed good general agreement. Based on the simulation study, this study presents recommendations for improved acid jetting treatment procedures to improve the distribution of acid injected into the formation.

Page generated in 0.0556 seconds