• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 54
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 400
  • 400
  • 90
  • 84
  • 60
  • 60
  • 51
  • 48
  • 44
  • 43
  • 42
  • 39
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spatial assessment of environmental fate of Acid Mine Drainage (AMD) contaminants in engineered wetlands along the Varkenslaagte canal

Rampedi, Ike Sephothoma January 2016 (has links)
A dissertation is submitted as MSc research project in partial fulfilment of the requirements for the degree of Master of Science in the School of Geography, Archaeology and Environmental Studies. July 2016. / A major cause of environmental problems, in the vicinity of mine tailings in and around Johannesburg, is Acid Mine Drainage (AMD). In most research, engineered wetlands are used to ameliorate AMD with the use of vegetation to remove or extract heavy metals from the soil (i.e. phytoremediation). Phytoremediation has been defined as a technology that uses plants to extract or immobilize contaminants in soils and waters (Torresdey, 2007). The aim of this study was to assess and quantify the mass pool size of contaminants (macronutrients, micronutrients, non-essential trace elements) within and between a subset of paddocks from various compartments including sediments, aboveground biomass (shoots –stems and leaves), and belowground biomass (roots and rhizomes) of the two wetland plant species present (P. australis and S. corymbosus ). Analyses were done on the wetland paddocks in situ and ex situ applying different methods, water sample metal cations were analysed by ICP-MS and the major anion analysis by chromatography and Ion Chromatography (IC). The sediment and plant samples were subject to X-Ray fluorescence (XRF) analyses of major elements and trace elements. Although analysis was undertaken for numerous trace and metal elements, only a few macronutrients, micronutrients, and non-essential elements with significant importance to the West Wits Mining Operation were selected for this study. The stream water test strips yielded poor results for this extremely contaminated plume receiving environment this suggests that in this system they are not a useful substitute for conventional laboratory analyses. Of the elements tested, only S showed significant differences in concentrations in plants between paddocks, with the highest concentrations and mass in the downstream paddocks ww6 and ww7. These paddocks also had the greatest masses of S in sediments, and water concentrations were also highest in paddocks ww4, ww6 and ww7. P. australis accumulated highest elemental mass than S. corymbosus, with the highest Zn mass of 93%. P. australis accumulated double the mass of U, Cu, Cl, Ca. In both plants, the roots consistently had highest elemental concentration with sequence often as follows roots> shoots> rhizomes. Sediment element mass accumulation of most tested elements significantly increased with depth, except for Zn and U, which decreased with depth. There are few significant differences in the mass distribution of the elements analysed between paddocks, which is assumed to reflect either the heterogeneity in the underlying sediments following construction of the wetlands, or lateral inputs into the system as seepage from other TSFs. Key words: AMD, Wetland, Varkenslaagte Canal, West Wits Mining Operation, metals, sediment, S. corymbosus, P. australis, ICP-MS, XRF. / LG2017
32

Development of acid rock drainage prediction methodologies for coal mine wastes

Stewart, Warwick January 2005 (has links)
Acid rock drainage (ARD) is recognised as one of the most serious environmental issues currently facing the mining industry. ARD management strategies rely heavily on the ability to measure the ARD potential of waste materials to ensure strategies are appropriate to the ARD risks. It is apparent that improvements to the understanding of ARD test methods and development of methods to better represent the ARD potential of samples will contribute significantly to the value and reliability of ARD assessment. The research described in this thesis focused on critical assessment and improvement of: ARD test methodology; approach to testing; and interpretation of results for coal mine wastes. Kaltim Prima Coal Mine (KPC) in Kalimantan, Indonesia was selected as a case study site to help focus the research, with the understanding that the broad similarities of coal sequences in general would allow broader application of the findings. / Thesis (PhDApSc(MineralsandMaterials))--University of South Australia, 2005
33

The role of microbial growth on arsenic release and speciation in acid mine damage

Ore, Christopher M. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "December, 2005." Includes bibliographical references (leaves 80-85). Online version available on the World Wide Web.
34

Mineralogy and Geochemistry of Pb, Zn and Ag Mine Tailings Originating From Carbonate-Rich Deposits

McClure, Roberta 1981- 14 March 2013 (has links)
Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. Unsecured tailings heaps and associated acid mine drainage have presented problems related to soil quality, water quality, and dust emission control in the Zimapan area. Objectives of the study of the mine tailings are (1) to determine mineralogy of the tailings in order to identify acid-producing minerals and heavy metals at risk for release in acidic conditions, and (2) to quantify carbonate minerals and (3) to determine heavy metal content that may be released by the products of sulfide mineral weathering. Representative mine tailings have been sampled from a site located north of Zimapan. Mineralogical characterization has been conducted with X-ray diffraction (XRD), and scanning and transmission electron microscopes (SEM and TEM). Total carbonates have been determined the Chittick procedure. X-Ray Fluorescence (XRF) has been utilized to determine total elemental composition. XRD and SEM analyses have confirmed the presence of pyrite and arsenopyrite indicating a potential for acid mine drainage. Calcite has been confirmed to have a significant presence in the unweathered samples by XRD and the Chittick procedure, with some samples containing an average of 19.4% calcite. NAA and XRF have revealed significant concentrations of toxic elements such as As, Pb and Zn in both the oxidized and unoxidized samples.
35

Removal of phosphorus/selenium from aqueous solutions by adsorption processes

Bhojappa, Shilpa. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xi, 66 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
36

Modeling of soil phosphorus sorption and control of phosphorus pollution with acid mine drainage floc

Sekhon, Bharpoor Singh. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xiv, 210 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
37

Characterization of wetland soils in the Beaver Creek Watershed

Stephens, Kyle, January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vi, 131 p. : ill. (some col.), col. map. Vita. Includes abstract. Includes bibliographical references (p. 69-74).
38

RE-EXAMINING TEMPORAL AND SEASONAL MICROBIAL ACID MINE : DRAINAGE COMMUNITY VARIATION

Auld, Ryan Richard 19 March 2014 (has links)
Acid Mine Drainage (AMD) is characterized by high metal concentrations and an extremely low pH, primarily generated by the microbial oxidation of iron sulfides from mine tailings. Research on the microbial AMD community has largely focused on Bacteria, while little information is known about the Archaeal and Eukaryote members or the seasonal patterns within the communities. Here I examined the Bacterial, Archaeal, and eukaryotic AMD seasonal microbial community, using direct sequencing techniques on AMD samples from the Copper Cliff Tailings AMD site in Sudbury, Ontario, Canada. I found large variation in the community profile and species composition between sampling times of both the Bacterial and Eukaryote communities, suggesting a dynamic community, both between and within seasons. Bacterial diversity was highest during the winter, with Acidithiobacillus dominating, while during the summer, Acidiphilium was the dominant genus. The winter Eukaryote community was dominated by classes of algae and fungi, while the majority of summer sequencing could not be classified to the class level. Few reads were obtained for the Archaeal domain, with low and similar biodiversity between seasons. Overall, the AMD community variation and abundance were found to largely correlate with drainage water and seasonal temperature.
39

The application of ecological theory to the remediation of macroinvertebrate communities impacted by acid mine drainage

Kitto, Justin January 2009 (has links)
Numerous streams on the West Coast drain catchments impacted by active or abandoned coal mining areas. Acid mine drainage (AMD) from coal mining can have significant negative effects on stream communities. Changing environmental ethics and regulations mean that mining companies are now encouraged to treat acid mine drainage to enable streams communities to recover. However, remediation efforts have not always been ecologically successful, and mining companies are seeking methods to enhance macroinvertebrate community recovery. Initially, I conducted an extensive survey of 45 streams draining the Stockton Plateau, which is the site of the largest opencast coal mine in New Zealand. I assessed physical and chemical conditions at each site as well as sampling benthic communities. This spatial survey showed streams impacted by acid mine drainage were comprised of chironomids and AMD-tolerant caddisflies such as Psilochorema and stoneflies such as Spaniocercoides. Un-impacted streams typically had a pH of ~5 and were dominated by mayflies (Deleatidium or Zephlebia). Analysis revealed that stream location within the landscape also had a significant influence on macroinvertebrate community composition. Another aspect of stream recovery is the ability of species to recolonise a stream. Therefore, I investigated the flight direction of adult aquatic insects in order to determine longitudinal and lateral flight preferences. No significant differences in flight direction were observed. I also investigated the influence of riparian habitat on lateral dispersal and found that a number of patterns were evident. Scrub vegetation supported higher densities of adult aquatic insects dispersing further from the stream, in contrast to the rapid decline in open bedrock and forest. Furthermore, a comparison between downstream drift and aerial flight showed significantly more individuals where drifting downstream, and this method is liable to provide rapid recolonisation of macroinvertebrates within connected stream networks. At the local scale, organic matter (comprising leaves bags and timber) and artificial moss cover were added to six streams to determine if organic matter and habitat availability would improve macroinvertebrate communities in manipulated streams. A series of floods during the experiment reduced taxonomic richness and density in manipulated streams. Overall, this study has shown that after AMD has been treated, the geographic position of streams within the landscape and lateral dispersal barriers may prevent streams being rapidly re-colonised. Therefore, to promote rapid re-colonisation of macroinvertebrates, stream remediation projects should be targeted at streams that either have un-impacted headwaters or tributaries. This will allow macroinvertebrates to drift in and re-colonise faster. In my experiment I did not find that organic matter significantly enhanced the macroinvertebrate community, but moss additions did provide additional habitat for macroinvertebrates. These results highlight the importance that disturbance events can have on remediation projects.
40

Microbiology of fly ash-acid mine drainage co-disposal processes.

Kuhn, Eloise M. R. January 2005 (has links)
The waste products acid mine drainage formed during coal mining and fly ash from coal burning power generation, pose substantial environmental and economic problems for South Africa. Eskom has developed a remediation system employing alkaline fly ash to neutralize and precipitate heavy metals from toxic acidic acid mine drainage streams. The aim of this study was to assess the microbial diversity in and microbial impact on this remediation system.

Page generated in 0.0897 seconds