• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloning and analysis of promoter regulating the expression of a purple acid phosphatase.

January 2001 (has links)
Zhang Siyi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 97-109). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / List of Tables --- p.vii / List of Figures --- p.viii / List of Abbreviations --- p.x / Chapter Chapter 1: --- General Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.3 / Chapter 2.1 --- Phosphorus and higher plants --- p.3 / Chapter 2.1.1 --- Phosphorus is a macronutrient in higher plants --- p.3 / Chapter 2.1.2 --- The forms of phosphorus in plant cells --- p.3 / Chapter 2.1.3 --- Phosphorus compartments and pools in plant cells --- p.6 / Chapter 2.2 --- The acquisition of phosphorus in higher plants --- p.8 / Chapter 2.2.1 --- The forms of phosphorus absorbed by higher plants --- p.8 / Chapter 2.2.2 --- Soil phosphorus bioavailability --- p.9 / Chapter 2.2.3 --- Uptake and transportation of phosphorus --- p.10 / Chapter 2.3 --- Adaptive responses of higher plants to phosphorus deficiency --- p.11 / Chapter 2.3.1 --- Phosphorus homeostasis --- p.12 / Chapter 2.3.2 --- Enhancement of phosphorus uptake --- p.14 / Chapter 2.3.3 --- Phosphorus scavenging and recycling --- p.16 / Chapter 2.4 --- Regulation of gene expression under phosphorus starvation --- p.18 / Chapter 2.5 --- Acid phosphatase and purple acid phosphatase in plants --- p.22 / Chapter 2.5.1 --- Acid phosphatases --- p.22 / Chapter 2.5.2 --- Purple acid phosphatase (PAP) --- p.26 / Chapter Chapter 3: --- Hypothesis --- p.31 / Chapter Chapter 4: --- Materials and Methods --- p.33 / Chapter 4.1 --- Materials --- p.33 / Chapter 4.1.1 --- Chemicals --- p.33 / Chapter 4.1.2 --- Plant materials --- p.33 / Chapter 4.1.3 --- Plasmid vectors and bacterial strains --- p.33 / Chapter 4.1.4 --- DNA sequencing --- p.34 / Chapter 4.1.5 --- Softwares: --- p.34 / Chapter 4.2 --- Methods: --- p.35 / Chapter 4.2.1 --- Survey of PAP occurrence in higher plants --- p.35 / Chapter 4.2.2 --- Determination of multi-gene family and gene copy number of PAPin tomato genome --- p.40 / Chapter 4.2.3 --- Effect of environmental Pi on the morphology of tomato and APase induction --- p.43 / Chapter 4.2.4 --- PAP expression in tomato seedlings growing at different Pi concentrations --- p.46 / Chapter 4.2.5 --- Genomic library construction and PAP promoter isolation --- p.48 / Chapter 4.2.6 --- PAP promoter activity assay by transient expression of reporter gene..… --- p.52 / Chapter Chapter 5: --- Results --- p.56 / Chapter 5.1 --- Identification of PAP gene in higher plants --- p.56 / Chapter 5.1.1 --- Design of primers and total RNA extraction --- p.56 / Chapter 5.1.2 --- RT-PCR --- p.57 / Chapter 5.1.3 --- Further investigation of PAP homologous sequences in monocotyledons --- p.60 / Chapter 5.2 --- Determination of multi-gene family and gene copy number of tomato PAP gene (TPAP 1) --- p.62 / Chapter 5.2.1 --- Determination of TPAP 1 copy number --- p.62 / Chapter 5.2.2 --- Determination of tomato PAP multi-gene family --- p.63 / Chapter 5.3 --- Effect of environmental phosphorus on the morphology of tomato seedling and APase induction --- p.66 / Chapter 5.3.1 --- Morphological changes of tomato seedlings under phosphorus starvation --- p.66 / Chapter 5.3.2 --- Acid phosphatase assays --- p.72 / Chapter 5.4 --- The phosphorus-regulated expression of tomato PAP --- Northern blot analysis --- p.74 / Chapter 5.5 --- Genomic library construction and PAP promoter isolation --- p.76 / Chapter 5.6 --- PAP promoter sequence --- p.79 / Chapter 5.7 --- Promoter activity assay through transient expression of reporter gene --- p.84 / Chapter 5.7.1 --- Effect of untranslation region of PAP gene --- p.84 / Chapter 5.7.2 --- Assay of PAP promoter activities regulated by phosphorus --- p.85 / Chapter Chapter 6: --- Discussion --- p.88 / Chapter 6.1 --- The wide occurrence and high conservation of plant PAP --- p.88 / Chapter 6.2 --- Tomato as a model plant and the organization of PAP gene in genome --- p.89 / Chapter 6.3 --- Morphological changes of tomato under phosphorus starvation and the induction of APase --- p.90 / Chapter 6.4 --- Regulation of PAP in tomato --- p.92 / Chapter 6.5 --- Isolation of PAP promoter --- p.92 / Chapter 6.6 --- Assay of PAP promoter activity --- p.93 / Chapter 6.7 --- Future perspectives --- p.94 / Chapter Chapter 7: --- Conclusion --- p.95 / References --- p.97
2

Promoter analysis and expression of the tomato purple acid phosphatase (TPAP1) in tobacco.

January 2004 (has links)
Suen Pui Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 154-168). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / List of Figures --- p.vii / List of Tables --- p.ix / List of Abbreviations --- p.x / Chapter Chapter 1: --- Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.3 / Chapter 2.1 --- Phosphorus and Plants --- p.3 / Chapter 2.1.1 --- Importance of phosphorus --- p.3 / Chapter 2.1.2 --- Phosphorus is a limiting nutrient --- p.3 / Chapter 2.2 --- Responses of Plants to Phosphate Deficiency --- p.4 / Chapter 2.2.1 --- Morphological changes of plants during phosphate deficiency --- p.5 / Chapter 2.2.1.1 --- Modification of the root system --- p.5 / Chapter 2.2.1.2 --- Symbiotic association of roots with mycorrhiza --- p.6 / Chapter 2.2.2 --- Maintenance of phosphate levels in plants during phosphate deficiency --- p.7 / Chapter 2.2.2.1 --- Phosphate homeostasis in plants --- p.7 / Chapter 2.2.2.2 --- "Enhancement of Pi scavenging, recycling and uptake" --- p.9 / Chapter 2.2.2.3 --- Pi-limited metabolism --- p.11 / Chapter 2.2.3 --- Hormones and phosphate starvation responses --- p.12 / Chapter 2.2.4 --- Regulation of gene expression during phosphate starvation --- p.14 / Chapter 2.2.4.1 --- The pho regulon in bacteria and yeast --- p.14 / Chapter 2.2.4.2 --- The coordination of phosphate starvation induced genes in plants --- p.19 / Chapter 2.2.4.3 --- Signaling phosphate starvation --- p.19 / Chapter 2.2.4.4 --- Phosphite and phosphate starvation --- p.21 / Chapter 2.2.4.5 --- Transcriptional regulation during phosphate starvation --- p.22 / Chapter 2.3 --- Acid Phosphatases in Higher Plants --- p.26 / Chapter 2.3.1 --- Enzymatic properties of acid phosphatases --- p.26 / Chapter 2.3.2 --- Localization and function of acid phosphatases --- p.27 / Chapter 2.3.3 --- Expression of acid phosphatases --- p.28 / Chapter 2.4 --- Purple Acid Phosphatases --- p.29 / Chapter 2.4.1 --- Properties of purple acid phosphatases --- p.29 / Chapter 2.4.2 --- Regulation and expression of plant purple acid phosphatase --- p.32 / Chapter 2.5 --- Tomato Purple Acid Phosphatases --- p.33 / Chapter 2.6 --- Promoter Analysis --- p.35 / Chapter 2.6.1 --- Structure of an eukaryotic promoter --- p.35 / Chapter 2.6.2 --- Promoter analysis by deletion mapping --- p.37 / Chapter 2.6.3 --- The computational approaches in promoter analysis --- p.38 / Chapter 2.6.4 --- Transient expression assay and transgenic expression assay --- p.39 / Chapter 2.7 --- Transcriptional Regulation of Tomato Purple Acid Phosphatase Expression --- p.40 / Chapter 2.8 --- Hypothesis --- p.41 / Chapter Chapter 3: --- Materials and Methods --- p.43 / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Materials --- p.44 / Chapter 3.2.1 --- Chemicals --- p.44 / Chapter 3.2.2 --- Plant materials --- p.44 / Chapter 3.2.3 --- Plasmid vectors and bacterial strains --- p.44 / Chapter 3.2.4 --- Primers design --- p.45 / Chapter 3.2.5 --- Confirmation of sequence fidelity --- p.46 / Chapter 3.3 --- Cloning of the TPAP1 Promoter Fragments --- p.46 / Chapter 3.3.1 --- Genomic DNA extraction --- p.46 / Chapter 3.3.1.1 --- Materials --- p.46 / Chapter 3.3.1.2 --- Procedures --- p.47 / Chapter 3.3.2 --- Cloning strategy of TPAP1 promoter --- p.47 / Chapter 3.3.3 --- TPAP1 promoter cloning --- p.48 / Chapter 3.3.3.1 --- Long-distance PCR --- p.48 / Chapter 3.3.4 --- Chimeric gene constructs --- p.48 / Chapter 3.3.4.1 --- Chimeric gene construction for particle bombardment --- p.51 / Chapter 3.3.4.2 --- Chimeric gene construction for tobacco transformation --- p.51 / Chapter 3.4 --- Transient Expression Assay of the TPAP1 Promoter Fragments --- p.54 / Chapter 3.4.1 --- TPAP1 promoter activity assay --- p.54 / Chapter 3.4.2 --- Preparation of MS culture medium --- p.54 / Chapter 3.4.3 --- Growing tomato seedlings in MS liquid medium --- p.56 / Chapter 3.4.4 --- Biolistic bombardment --- p.56 / Chapter 3.4.5 --- GUS histochemcial staining --- p.57 / Chapter 3.4.5.1 --- Materials --- p.57 / Chapter 3.4.5.2 --- Procedures --- p.57 / Chapter 3.5 --- Transgenic Assay of the TPAP1 Promoter Fragments --- p.58 / Chapter 3.5.1 --- Materials for tobacco transformation --- p.58 / Chapter 3.5.2 --- Agrobacterium tumefaciens preparation --- p.58 / Chapter 3.5.3 --- Tobacco transformation and regeneration --- p.59 / Chapter 3.5.4 --- Promoter activity analysis --- p.60 / Chapter 3.5.4.1 --- Materials --- p.60 / Chapter 3.5.4.2 --- Procedures --- p.60 / Chapter 3.5.5 --- Southern blot analysis --- p.61 / Chapter 3.5.6 --- RNA isolation --- p.61 / Chapter 3.5.6.1 --- Materials --- p.61 / Chapter 3.5.6.2 --- Procedures --- p.61 / Chapter 3.5.7 --- Northern blot analysis --- p.62 / Chapter 3.6 --- Biochemical Analysis of Acid Phosphatase Activities --- p.63 / Chapter 3.6.1 --- Excretion of acid phosphatase into the environment --- p.63 / Chapter 3.6.2 --- Growing tomato seedlings in MS medium --- p.63 / Chapter 3.6.3 --- Acid phosphatase activity assay by p-nitrophenyl phosphate --- p.64 / Chapter 3.6.4 --- Activity-gel detection --- p.65 / Chapter 3.6.4.1 --- Materials --- p.65 / Chapter 3.6.4.2 --- Procedures --- p.65 / Chapter 3.7 --- "Sequence Analysis of the TPAP1 gene, cDNA and promoter" --- p.66 / Chapter 3.7.1 --- Isolation of TPAPl cDNA --- p.66 / Chapter 3.7.1.1 --- Rapid amplification of cDNA ends (RACE) --- p.66 / Chapter 3.7.1.2 --- RT-PCR --- p.67 / Chapter 3.7.2 --- Isolation of TPAP1 gene --- p.67 / Chapter 3.7.2.1 --- PCR amplification of the TPAP1 gene --- p.67 / Chapter 3.7.2.2 --- TPAP1 gene sequence determination --- p.68 / Chapter 3.7.3 --- Sequence analysis --- p.69 / Chapter 3.8 --- Statistical analysis --- p.70 / Chapter Chapter 4: --- Results --- p.72 / Chapter 4.1 --- "Cloning of the TPAP1 Promoter Fragments, Gene and cDNA" --- p.72 / Chapter 4.1.1 --- TPAP1 promoter fragment constructs --- p.72 / Chapter 4.1.2 --- TPAP1 cDNA cloning --- p.72 / Chapter 4.1.3 --- TPAP1 gene cloning --- p.72 / Chapter 4.2 --- "Sequence analysis of the TPAP1 promoter, gene, cDNA and predicted amino acid sequence" --- p.76 / Chapter 4.2.1 --- "The DNA sequence of the TPAP1 promoter, gene and cDNA" --- p.76 / Chapter 4.2.2 --- Properties of TPAP1 cDNA and protein --- p.83 / Chapter 4.2.3 --- Identification of potential metal ligating residues on TPAP1 --- p.85 / Chapter 4.2.4 --- Phylogenetic relationship of TPAPl to other plant PAPs --- p.86 / Chapter 4.2.5 --- Sequence comparison of 5'UTR ofTPAPl and NtPAP12 --- p.89 / Chapter 4.3 --- APase Activity Assay --- p.90 / Chapter 4.3.1 --- p-NPP APase activity assay --- p.90 / Chapter 4.3.2 --- Activity-gel detection --- p.90 / Chapter 4.4 --- "Comparison of TPAP 1, IAP,SAP 1 and SAP2" --- p.96 / Chapter 4.5 --- Potential Cis-acting Regulatory Elements (CAREs) on the TPAP1 Promoter --- p.100 / Chapter 4.5.1 --- Search for potential CAREs --- p.100 / Chapter 4.5.2 --- Functions of CAREs --- p.100 / Chapter 4.6 --- Transient Expression Analysis --- p.102 / Chapter 4.6.1 --- Biolistic bombardment of TPAP1 promoter fragments into tomato roots --- p.102 / Chapter 4.7 --- Transgenic Expression Analysis --- p.104 / Chapter 4.7.1 --- Transformation of tobacco --- p.104 / Chapter 4.7.2 --- Northern and RT-PCR analysis of GUS expression --- p.110 / Chapter 4.7.3 --- GUS activity analysis --- p.114 / Chapter 4.7.4 --- Histochemical staining of GUS --- p.123 / Chapter Chapter 5: --- Discussions --- p.135 / Chapter 5.1 --- Properties ofTPAPl --- p.135 / Chapter 5.1.1 --- "Structure of the TPAP1 promoter, gene and cDNA" --- p.135 / Chapter 5.1.2 --- Potential flmction(s) ofTPAPl --- p.135 / Chapter 5.1.3 --- The potential relationship between TPAP1 and NtPAP12 --- p.137 / Chapter 5.2 --- Induction of Secretory APases during Pi Starvation --- p.137 / Chapter 5.3 --- Putative Protein Encode by theTPAP 1 cDNA --- p.138 / Chapter 5.4 --- Promoter Analysis of TPAP1 --- p.140 / Chapter 5.4.1 --- Construct preparation --- p.140 / Chapter 5.4.2 --- Potential CAREs located on the TPAP1 promoter --- p.141 / Chapter 5.4.3 --- Transient expression analysis --- p.142 / Chapter 5.4.4 --- Transgenic expression analysis --- p.143 / Chapter 5.4.4.1 --- Northern analysis and RT-PCR analysis of GUS expression --- p.143 / Chapter 5.4.4.2 --- GUS activity analysis --- p.143 / Chapter 5.4.4.3 --- Histochemical staining of GUS --- p.145 / Chapter 5.5 --- Hypothetical Model for TPAP1 Promoter Activities --- p.146 / Chapter 5.5.1 --- Model for expression level --- p.146 / Chapter 5.5.2 --- Models for spatial expressions --- p.148 / Chapter 5.6 --- Future Perspectives --- p.150 / Chapter Chapter 6: --- Conclusions --- p.152 / References --- p.154

Page generated in 0.0721 seconds