• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical and Spectroscopic Characterization of Tryptophan Oxygenation: Tryptophan 2, 3-Dioxygenase and Maug

Fu, Rong 10 June 2009 (has links)
TDO utilizes b-type heme as a cofactor to activate dioxygen and insert two oxygen atoms into free L-tryptophan. We revealed two unidentified enzymatic activities of ferric TDO from Ralstonia metallidurans, which are peroxide driven oxygenation and catalase-like activity. The stoichiometric titration suggests that two moles of H2O2 were required for the production of one mole of N-formylkynurenine. We have also observed monooxygenated-L-tryptophan. Three enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric TDO in the absence of L-Trp including compound I-type and compound ES-type Fe-oxo species. The Fe(IV) intermediates had an unusually large quadrupole splitting parameter of 1.76(2) mm/s at pH 7.4. Density functional theory calculations suggest that it results from the hydrogen bonding to the oxo group. We have also demonstrated that the oxidized TDO was activated via a homolytic cleavage of the O-O bond of ferric hydroperoxide intermediate via a substrate dependent process to generate a ferrous TDO. We proposed a peroxide activation mechanism of the oxidized TDO. The TDO has a relatively high redox potential, the protonated state of the proximal histidine upon substrate binding as well as a common feature of the formation of ferric hydroxide species upon substrate or substrate analogues binding. Putting these together, we have proposed a substrate-based activation mechanism of the oxidized TDO. Our work also probed the role of histidine 72 as an acid-base catalyst in the active site. In H72S and H72N mutants, one water molecule plays a similar role as that of His72 in wild type TDO. MauG is a c-type di-heme enzyme which catalyze the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Its natural substrate is a monohydroxylated tryptophan residue present in a 119-kDa precursor protein of methylamine dehydrogenase (MADH). We have trapped a novel bis-Fe(IV) intermediate from MauG, which is remarkably stable. A tryptophanyl radical intermediate of MADH has been trapped after the reaction of the substrate with the bis-Fe(IV) intermediate. Analysis by high-resolution size-exclusion chromatography shows that MauG can tightly bind to the biosynthetic precursor and form a stable complex, but the mature protein substrate does not.

Page generated in 0.0477 seconds