• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel hydrophobic ZRO2-SIO2 based heterogeneous acid catalyst for the esterification of glycerol with oleic acid / Développement de nouveaux catalyseurs hydrophobes pour l'estérification du glycérol par l'acide oléïque et étude du procédé

Kong, Pei San 22 May 2018 (has links)
Le faible coût du glycérol sur le marché a conduit à des études approfondies sur la conversion du glycérol en dérivés à valeur ajoutée. Ce travail se concentre sur l'estérification catalytique du glycérol, avec l'acide oléique, réaction d’intérêt industriel en raison de la grande valeur commerciale des produits obtenus. Dans ce travail, un nouveau catalyseur acide hétérogène présentant une surface hydrophobe a été développé sur le support ZrO2-SiO2 car un catalyseur acide solide tolérant à l'eau est essentiel pour les réactions d'estérification en milieu biphasique produisant de l'eau. Le catalyseur synthétisé (ZrO2-SiO2-Me&Et-PhSO3H) a été préparé par silication et modification de surface en utilisant du triméthoxyméthylsilane (TMMS) et du 2-(4- chlorosulfonylphényl) éthyltriméthoxysilane. La morphologie de surface, les propriétés physicochimiques et texturales, l'acidité et l'hydrophobicité ont été caractérisées. Le mécanisme de modification de la surface du catalyseur est proposé en fonction des résultats de caractérisation complets. Une nouvelle technique pour contrôler le niveau d'acidité et d'hydrophobicité du catalyseur conçu est décrite dans ce travail. L'acidité et l'hydrophobicité du catalyseur ont été réglées en contrôlant la quantité d'agents de modification de surface. Il a pu être montré que l'hydrophobicité du catalyseur était diminuée à mesure que son acidité augmentait. Le catalyseur ZrO2-SiO2-Me & Et-PhSO3H_70 avec 70% molaire de TMMS et 0,62 mmol/g d'acidité est le catalyseur optimal pour l'estérification du glycérol avec l'acide oléique. Enoutre, le rôle de l'hydrophobicité dans la réaction catalytique a été étudié ici. Ce travail a montré qu'à acidité constante du catalyseur, le catalyseur le plus hydrophobe présentait un meilleur rendement. La conversion en utilisant le catalyseur préparé (ZrO2-SiO2-Me et EtPhSO3H_70) est de 88,2% avec une sélectivité en monooléate de glycérol de 53,5% et une sélectivité en dioléate de glycérol de 40,0% (sélectivité combinée de 94% en monooléate et dioléate de glycérol) pour un rapport équimolaire d'acide oléique/glycérol, une température de réaction de 160°C, une concentration massique du catalyseur de 5% par rapport à la masse d’acide oléique introduit, en conditions de réaction sans solvant et avec un temps de réaction de 8 h. Ce travail révèle que l'hydrophobicité et le volume des pores du catalyseur conçu affectent significativement la sélectivité en produit. De plus, les performances du catalyseur hydrophobe ZrO2-SiO2-Me&Et- PhSO3H_70, ont été comparées à celles de la zircone sulfatée (SO42-/ZrO2) et des catalyseurs commerciaux (Amberlyst 15 et Aquivion). Les résultats de corrélation ont montré que le volume moyen des pores (taille des pores) influençait la sélectivité du produit lorsque le catalyseur ZrO2- SiO2-Me&Et-PhSO3H_70 était comparé à trois catalyseurs SO42-/ZrO2 développés à partir de différents précurseurs de zirconium. Ainsi, le catalyseur à volume de pores le plus élevé est favorable à la production de dioléate de glycérol dans des conditions réactionnelles identiques. On peut conclure que le volume et la taille des pores peuvent être utilisés pour contrôler la sélectivité en produit. En outre, cette étude a également révélé que la propriété d'hydrophobicité améliorait la vitesse de réaction initiale. / The low market value of glycerol has led to extensive investigations on glycerol conversion to value-added derivatives. This work focuses on industrially important catalytic esterification of glycerol with oleic acid due to the high commercial value of the resulting products. In this work, a novel heterogeneous acid catalyst featuring hydrophobic surface was developed on ZrO2-SiO2 support as water tolerant solid acid catalyst is vital for biphasic esterification reactions producing water. The synthesized catalyst (ZrO2-SiO2-Me&Et-PhSO3H) was prepared through silication and surface modification using trimethoxymethylsilane (TMMS) and 2-(4-chlorosulfonylphenyl) ethyltrimethoxysilane. The surface morphology, physiochemical and textural properties, acidity and hydrophobicity were characterized. The mechanism of the catalyst surface modification is thereof proposed according to comprehensive characterization results. A novel technique to control acidity and hydrophobicity level of the designed catalyst is disclosed in this work. The acidity and hydrophobicity of the catalyst were tuned by controlling the amount of surface modification agents. It was found that the hydrophobicity of the catalyst decreased as its acidity increased. ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst with 70 mol% of TMMS and 0.62 mmol/g acidity is the optimal catalyst for glycerol esterification with oleic acid. Furthermore, the role of hydrophobicity in catalytic reaction was investigated herein. It was found that at constant catalyst acidity, the more hydrophobic catalyst showed better yield. The conversion using the designed catalyst (ZrO2-SiO2-Me&EtPhSO3H_70) is 88.2% with 53.5% glycerol monooleate selectivity and 40.0% glycerol dioleate selectivity (combined 94% selectivity of glycerol monooleate and dioleate) at equimolar oleic acid-to-glycerol ratio, 160 oC, reaction temperature, 5 wt% catalyst concentration with respect to weight of oleic acid, solvent-less reaction conditions and 8 h reaction time. This work reveals that the hydrophobicity and the pore volume of the designed catalyst significantly affect the product selectivity. In addition, the performance of the hydrophobic designed ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was used to benchmark with catalytic activity of sulfated zirconia (SO42-/ZrO2) and commercial catalysts (Amberlyst 15 and Aquivion). The correlation results showed that the average pore volume (pore size) influenced the product selectivity when ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was compared to three SO42-/ZrO2 catalysts that were developed from different zirconium precursors. Whereby, the higher pore volume catalyst is favourable to glycerol dioleate production at identical reaction conditions. It can be concluded that pore volume and size can be used to control the product selectivity. In addition, this study also revealed that hydrophobicity characteristic facilitated initial reaction rate effectively.
2

Nouvelles méthodologies pour le clivage oxydant de doubles liaisons d'acides gras / New methodologies for the oxidative clivage of fatty acid's double bonds

Paquit, Bénédicte 17 December 2009 (has links)
Au niveau industriel, l'accès aux acides azélaïque et pélargonique, composés à forte valeur ajoutée, est possible grâce à une réaction d'ozonolyse de l'acide oléïque. Cependant, cette méthode présente certains désavantages sur le plan écologique. Le but de cette étude a donc été de développer une méthode alternative à ce procédé industriel, visant à limiter autant que possible les impacts écologiques, directs ou indirects, lors de la synthèse des acides azélaïque et pélargonique. Nous avons ainsi montré qu'un clivage en deux étapes peut être préférable à un clivage oxydant en une étape. Notre procédé propose ainsi, dans un premier temps, une dihydroxylation de la double liaison d'acides gras par une méthode connue, laquelle est suivie par un clivage oxydant en présence d'hypochlorite de sodium. Ce nouveau procédé mis au point au sein du laboratoire présente l'avantage de ne nécessiter l'emploi ni de métaux de transition, ni de solvant organique. Nous avons par la suite étudié l'hypochlorite de sodium afin de déterminer son rôle et son mode d'action dans la réaction de clivage de diols vicinaux / Industrial production of two high added value compounds called pelargonic acid and azelaic acid is made possible by the ozonolysis reaction of oleic acid. However, this method has numerous disadvantages in term of ecological impact. In this dissertation, we present an alternative to the current industrial process in order to lower direct or indirect negative environmental impacts when synthetizing azelaic and pelargonic acids. At first we demonstrate that a two-step oxidative cleavage may be preferable to a one-step cleavage. Then we present in details a novel synthesis method which starts with the dihydroxylation of the fatty acids double bond using a well known method, followed by the oxidative cleavage in presence of sodium hypochlorite. One notes that this original fabrication process developed in our laboratory does not require to use transition metals nor organic solvents. As a complement to this work, we have subsequently studied the sodium hypochlorite to determine its role and operating mode in the vicinal diols cleavage reaction

Page generated in 0.0435 seconds